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Abstract

This paper offers an alternative way, based on the logistic population growth
hypothesis, to yield transitional dynamics in the standard AK model with exoge-
nous savings rate. Within this framework, we show that the dynamics of the capital
stock per person and its growth rate can be non-monotonic over time. Moreover,
even in the presence of negative growth, the capital stock per-capita can converge
to a strictly positive level (different from the initial level) when time goes to in-
finity. In general, the analysis allows us to conclude that the dynamics of the
Solow-Swan model with linear technology and logistic population growth is richer
than the one with exponential population growth.
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1 Introduction
One of the most relevant conclusions of the neoclassical growth model (Solow, 1956,
and Swan, 1956, henceforth simply Solow-Swan) is that in the steady-state the growth
rate of real per-capita output equals the rate of technological progress, which is taken as
an exogenous variable. In the absence of exogenous technical change economic growth
would be zero. Although neoclassical growth theory is unable to reveal the ultimate
sources of long run growth, it provides a useful setting for the study of transitional
dynamics and suggests that along the transition, starting from an initially low level of
per-capita variables, their growth rates decline monotonically. This is the traditional
(absolute and conditional) convergence result of the Solow-Swan model. As it is well
known (Barro and Sala-i-Martin, 2004, Chap. 1) this result crucially hinges upon the
assumption that the aggregate production function displays positive but diminishing
returns to private inputs (including physical capital).

The so-called AK models (Romer, 1986; Rebelo, 1991, Jones and Manuelli, 1990)
were developed between the end of the 1980s and the beginning of the 1990s as a
response to the outcome of the neoclassical theory that, without technological progress,
economic growth would eventually be doomed to be equal to zero. In particular, these
models challenge the neoclassical assumption that returns to capital diminish as the
capital stock increases and in their simplest version (Rebelo, 1991) postulate a world
where the marginal and average products of capital are always constant. Under the
latter hypothesis the result is reached that in the very long run per-capita GDP growth is
both endogenous (in the sense that it stems from the structure of the model) and, under
specific conditions on the parameter values, also persistently positive even without any
technical change. However, unlike the neoclassical growth model, the standard AK
formulation (Rebelo, 1991) also predicts that growth rates do not exhibit any tendency
to (absolute or conditional) convergence. In other words, the model has no transitional
dynamics (per-capita variables always grow at the same constant rate). This represents
a substantial weakness of the model since conditional convergence seems to be an
empirical regularity.

Recently, several attempts at saving the AK model from the criticism that it cannot
explain convergence have been done. Acemoglu and Ventura (2002), Boucekkine et al.
(2005), Carroll et al. (1997), Gomez (2008), and Kocherlacota and Yi (1995,1996) are
comprehensive and rigorous examples.

Acemoglu and Ventura (2002) show how specialization and international trade may
affect the process of world growth and convergence. The idea they propose is that in
an open economy the parameter A will depend positively on a country’s terms of trade.
A country that accumulates more capital supplies more of the commodities in which
it specializes to the rest of the world relative to the supply of foreign goods, and this
drives its terms of trade down. The decline of the terms of trade, in turn, reduces A
and discourages further accumulation of capital, so lowering the country’s growth rate
until it converges to the growth rate of the rest of the world (terms-of-trade effect).

Boucekkine et al. (2005) replace the standard hypothesis of exponential deprecia-
tion of physical capital that one may find in the basic AK model of Rebelo (1991) with
the assumption that all machines have a fixed lifetime (a constant “scrapping time”).
This assumption allows them “. . . to add to the AK model the minimum structure needed
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to make the vintage capital technology economically relevant” (p. 40). They show that
the use of this simple depreciation rule changes completely the dynamics of the stan-
dard AK model in the sense of making convergence to the balanced growth path no
longer monotonic due to the existence of replacement echoes.

Through numerical simulations, Carroll et al. (1997) show that the introduction of
habit formation1 in the standard AK endogenous growth model may cause this model
to exhibit transitional dynamics. Gomez (2008) proves formally that the convergence
speed of the AK model with external habits is higher than that in the AK model with
internal habits.2

Finally, Kocherlacota and Yi (1995,1996) show that the introduction of exogenous
technological shocks may represent another useful approach in the direction of making
the AK model consistent with the convergence result of the neoclassical growth theory.

The main objective of our paper is to offer a different way to recover transitional
dynamics in standard AK-type models. The alternative framework we present here is
based on the notion of population change. More concretely we extend Guerrini (2006),
who has already extensively analyzed the role of a variable population growth rate
within the neoclassical growth model, by assuming a linear (AK) aggregate production
function without diminishing returns to capital and a logistic-type population growth
law. We continue to follow Solow-Swan in assuming that the savings rate is exogenous.
The reason is that we want to stress here the importance of the logistic population
growth model as a mechanism able per-se to restoring transitional dynamics in the
simplest version of the AK model. Therefore, concerning the nature of the savings
rate, we make the easiest possible hypothesis (that of exogeneity).

Within this framework we show that, contrary to the standard AK model, the cap-
ital stock per-worker is not necessarily always growing. More generally, we conclude
that the dynamics of the Solow-Swan model with AK production function and logistic
population growth is richer than that with exponential population growth.

The paper is structured as follows. In Section 2 we present a brief reminder of
the basic Solow-Swan model with AK technology and exponential population growth.
In Section 3 we replace the assumption of exponential population growth with that
of logistic population growth. In section 4 we characterize the steady-state equilibria
of the Solow-Swan model with linear technology and logistic population growth and
analyze the transitional dynamics of it. Section 5 concludes.

2 The Solow-Swan model with AK technology and con-
stant labor growth rate: a brief reminder

There is a single good (Yt) produced by means of only one factor of production, phys-
ical capital (Kt), according to an aggregate production function exhibiting constant
returns to scale (CRS), i.e. Yt = F (Kt) = AKt, where A is an exogenous positive
constant that reflects the level of the technology. Because of the presence of CRS to

1In habit-formation models individuals’ utility depends on their current consumption and on how their
current consumption compares to a reference consumption level (the habits stock).

2In models with internal habits the habits stock is formed from own past consumption levels. In models
with external habits, instead, the habits stock is formed from economy-wide average past consumption levels.
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the only reproducible factor-input the economy is capable of endogenous growth. The
supply of savings is assumed to be proportional to aggregate income, i.e. St = sYt,
where s denotes the exogenous saving rate. Since the economy is closed and there is no
public sector, the change in the capital stock equals gross investment less depreciation,
i.e.

.

Kt = sYt − δKt, where δ is the constant obsolescence rate of physical capital
and a dot over a variable represents differentiation with respect to time. If we define
a new variable, the capital-labor ratio kt = Kt/Lt, then the growth rate in the capital
stock per-worker3 is given by

.

kt/kt =
.

Kt/Kt−
.

Lt/Lt. Therefore, by substituting the
production function into the law of motion of capital, and by multiplying through by
kt, we get

.

kt = (N − n)kt, N ≡ sA− δ, (1)

where n =
.

Lt/Lt denotes the constant labor (or population) growth rate. This first
order differential equation in kt is the fundamental equation of the Solow-Swan model
with a production function which is linear in physical capital. Together with the initial
condition k0 > 0, Eq. (1) completely determines the entire time path of the per-capita
capital stock. In addition, given this path, we can compute the paths for yt = Akt,
per-capita output, and ct = (1− s)yt, per-capita consumption. From Eq. (1) it is also
possible to conclude:

Lemma 1. For all t > 0, the time path of per-worker capital stock is

kt =
k0L0e

Nt

Lt
. (1′)

Proof. Immediate from Eq. (1) with N 6= n.

In Eq. (1′), Lt and L0 represent the size of the labor-force at time t and at time 0,
respectively. We assume L0 > 0. Putting together Eqs. (1) and (1′) we get the
following Proposition.

Proposition 1. If N = n, then any level of initial capital will be a steady-state with
zero growth in the per-worker capital stock. If N < n, there will always be negative
growth and eventually the economy will converge in the long-run to a capital stock
per-worker equal to zero. If N > n, the economy will always grow at a positive and
constant rate, irrespective of the level of the capital-labor ratio that it starts from, and
in the very long-run will approach an infinitely large level of capital per-worker.

In words, Proposition 1 says that depending on the value of N relative to n in the
Solow-Swan growth model with AK technology and constant population change, eco-
nomic growth can be either equal to zero (with the per-capita capital stock remaining
constant over time at its initial level), or negative (with the per-capita capital stock
monotonically converging over time toward zero), or else positive (with the per-capita
capital stock monotonically converging over time toward infinity).

Thus, the AK model with exogenous savings rate and constant population growth
predicts that physical capital accumulation can generate sustained and positive growth

3We simplify the analysis by assuming that the labor-force is equal to the total population. With this
assumption per-capita and per-worker variables do coincide.
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even in the absence of any disembodied technological progress: an economy that starts
from a stock of capital per-worker equal to k0 will perpetually accumulate physical
capital and its capital stock per-capita will rise at a constant rate toward infinity if
N > n. This condition states that, for this event to occur, the savings rate (adjusted by
the level of technology, sA), net of the depreciation rate of physical capital (δ), should
be greater than the constant population growth rate (n).

3 The Solow-Swan model with AK technology and lo-
gistic labor growth rate

In this section we modify the basic Solow-Swan model with AK technology by consid-
ering a different population growth law. In the model of the previous section population
was assumed to grow according to

.

Lt = nLt, where n is the given population growth
rate. The main problem of this assumption is that population grows exponentially, i.e.
Lt = L0e

nt, with L0 > 0, and so, if n > 0, Lt tends to infinity as time goes to infinity,
which is clearly unrealistic. To remove the prediction of unbounded population size in
the very long-run Verhulst (1838) considered the hypothesis that any stable population
would show a saturation level. Therefore, he proposed to augment the exponential pop-
ulation growth model by the multiplicative factor −bLt, where b is a positive constant
such that n− bL0 > 0:

.

Lt

Lt
= n− bLt, b > 0. (2)

This equation is known as the Verhulst equation and the underlying population growth
model is known as logistic model. Sometimes Eq. (2) is written as

.

Lt/Lt = n(1 −
Lt/Ω), where Ω = n/b is called by demographers the carrying capacity. As a function
of time, Eq. (2) is a Bernoulli differential equation whose solution is

Lt =
nL0e

nt

n− bL0 + bL0ent
. (3)

Hence, the Lt-dependent population growth rate (n− bLt) in Eq. (2) allows to have a
finite limiting population, n/b. From Eq. (3), we derive that Lt is monotone increasing
from L0 to L∞ = n/b. With the inclusion of a logistic-type population growth law the
economy of the modified AK model is, thus, described by

{ .

kt = [N − (n− bLt)] kt,
.

Lt = Lt(n− bLt).
(4)

Given k0 > 0 and L0 > 0, Eq. (4) becomes a Cauchy problem, which has a unique
solution (kt, Lt) defined on [0,∞).

4 Steady-state analysis and transitional dynamics
In this section we start by defining and characterizing the steady-state equilibria of the
model. A steady-state in this economy is defined as a situation in which the growth
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rate of the per-capita physical capital stock and the growth rate of labor are both equal
to zero. We denote the steady-state equilibrium values of kt and Lt by k∗ and L∗,
respectively. In studying the steady-states of our model, we confine our analysis only to
interior solutions, i.e. we exclude economically meaningless solutions such as k∗ = 0
or L∗ = 0.

Lemma 2. The economy has infinite steady-state equilibria if N = 0, and no steady-
state if N 6= 0.

Proof. To solve for the steady-state equilibrium we impose the growth rates in system
(4) to be zero. This leads to: Nkt = 0 and n− bLt = 0. From these, we can conclude
that, if N 6= 0, the economy has no (non-trivial) steady-state, whereas, if N = 0, for
any value k∗ > 0, the point (k∗, L∗), where L∗ = n/b, is a (non-trivial) steady-state
equilibrium.

The next Lemma characterizes the evolution of the capital-labor ratio over time.

Lemma 3. For all t > 0, the time path of per-worker capital is given by

kt =
k0L0e

Nt

Lt
. (5)

Proof. The first equation of the dynamical system (4) is an homogenous first-order
differential equation, whose solution, from elementary differential calculus, is known
to be given by kt = k0e

∫ t
0 (N−

.
Lt/Lt)dt = k0e

Nt−ln(Lt/L0) = k0L0e
Nt/Lt.

Thus, even with logistic population growth, the time path of per-worker capital (kt)
coincides with the one we would get with exponential population growth. In particular,
for given k0 > 0 and L0 > 0, kt depends negatively on current population size Lt (di-
lution effect). The next Proposition analyzes the relationship between economic growth
and the net adjusted savings rate (N) in the Solow-Swan model with AK technology
and logistic population growth.

Proposition 2. Let γkt ≡
.

kt/kt and γLt ≡
.

Lt/Lt denote the per-worker capital stock
growth rate and the labor growth rate, respectively.

1) Let N = 0. Then γkt = −γLt < 0 for each t ∈ [0,∞). The growth rate of the
per-capita capital stock (γkt) tends to zero when t goes to infinity.

2) Let N < 0. Then γkt < 0 for each t ∈ [0,∞). The growth rate of the per-capita
capital stock (γkt) is negative even when t goes to infinity.

3) Let N > 0. If N ≥ n− bL0, then γkt ≥ 0 for each t ≥ 0. If N < n− bL0, then
there exists a unique T > 0 such that γkt < 0 for each t ∈ [0, T ) and γkt ≥ 0 for
each t ∈ [T,∞). The growth rate of the per-capita capital stock (γkt) is positive
when t goes to infinity. The value of T is given by (1/n) ln[(n − bL0)(n −
N)/bL0N ].
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Proof. The statement follows immediately once we rewrite
.

kt = (N−γLt
)kt as γkt

=
N − γLt

, and recall that 0 ≤ γLt
≤ n − bL0. Let N < n − bL0. What we know

is that both γLt and N are less than n − bL0, and this is clearly not enough to make
any conclusion about the sign of γkt

. Consequently, the behavior of γkt
seems to be

undetermined in this case. However, replacing Eq. (3) into Eq. (2) yields

γLt
=

n(n− bL0)
n− bL0 + bL0ent

. (6)

Since
.
γLt

< 0, we derive that γLt
is a monotone decreasing function from γL0 =

n − bL0 to γL∞ = 0. This fact allows us to conclude that there is a unique value
of t, say T , where the curves γLt

and N meet each other. Moreover, γLt
> N if

t ∈ [0, T ), and γLt
≤ N if t ∈ [T,∞). Finally, setting γLt

equal to N , and solving the
corresponding equation we get the value T .

Corollary 1.

1) Let N = 0. Starting from k0, the capital stock kt decreases monotonically to
k0L0b/n < k0.

2) Let N < 0. Then kt decreases monotonically from k0 to 0.

3) Let N > 0. If N ≥ n − bL0, then kt increases monotonically from k0 to
∞. If N < n − bL0, then there exists a unique T > 0 such that kt decreases
monotonically to kT in [0, T ), and it increases monotonically to ∞ in [T,∞).

Proof. Let N = 0. Then Eq. (5) becomes kt = k0L0/Lt. Therefore, kt converges
to the positive number k0L0b/n as t grows to infinity. In addition, from Proposition
2 we know that γkt < 0, which implies

.

kt < 0, i.e. kt decreases monotonically. Let
N < 0. Again from Proposition 2 and Eq. (5), rewritten as kt = k0L0/(e−NtLt), we
can conclude that kt decreases monotonically to 0. Let N > 0. If N ≥ n− bL0, then
Proposition 2 yields that kt is a monotone increasing function. Moreover, by taking t to
infinity in Eq. (5) we get k∞ = ∞. Similarly, the statement when N < n− bL0.

In words, Proposition 2 and Corollary 1 suggest that in the Solow-Swan model with AK
technology and logistic-type population growth the dynamics of γkt and kt is crucially
related to the value of N ≡ sA − δ (the adjusted savings rate, net of physical capital
depreciation). When N = 0, then the growth rate of the economy is always (namely,
for each finite t) negative and the per-capita capital stock converges monotonically
from k0 to a positive constant, lower than k0. When N < 0, instead, the growth rate
of the economy is still always negative, but now the per-capita capital stock converges
monotonically from k0 to zero. This case parallels the case where N < n in the Solow-
Swan model with AK technology but constant exponential population growth. Finally,
when N > 0 the dynamics of γkt and kt can be monotonic or not over time depending
on whether N ≥ n−bL0 or 0 < N < n−bL0. When N ≥ n−bL0 > 0, the dynamics
of γkt and kt is still monotonic over time with the growth rate of the economy being
always positive (or, at most, equal to zero, γkt ≥ 0) and the per-capita capital stock
increasing monotonically from k0 toward infinity. The most interesting case, however,
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is when 0 < N < n− bL0. In this interval of parameter values the evolution over time
of γkt

and kt becomes non-monotonic. In more detail, when t ∈ [0, T ), the growth rate
of the economy is negative and kt decreases monotonically toward a finite kT . When
t ∈ [T,∞), the growth rate of the economy becomes positive (or, at most, equal to
zero) and kt increases monotonically from k0 to infinity. Therefore, in the Solow-Swan
model with AK technology and non-constant population growth, economic growth can
be positive or equal to zero either when n − bL0 ≤ N (in this case γkt

≥ 0 for each
t ≥ 0), or when N ∈ (0, n−bL0). In the latter case γkt

≥ 0 only for a sufficiently large
t, namely t ∈ [T,∞). This is an important difference with the Solow-Swan growth
model with AK technology and constant exponential population growth where a non-
negative growth rate of variables in per-capita terms can be achieved (and for each time
t) only by postulating a net adjusted saving rate (sA− δ) not lower than the exogenous
and constant population growth rate (N ≥ n). Another relevant difference with the
Solow-Swan growth model with AK technology and constant exponential population
growth is that, even in the presence of a negative growth rate, the per-capita stock of
capital can converge to a strictly positive constant when t goes to infinity (this happens
whenever N = 0).
The next Corollary summarizes the long-run solution of the model in the variables,
(kt, Lt) depending on the value N .

Corollary 2. The long-run behavior of the model’s solution is as follows:
lim

t→∞
(kt, Lt) = (k0L0b/n, n/b) if N = 0, lim

t→∞
(kt, Lt) = (0, n/b) if N < 0, and

lim
t→∞

(kt, Lt) = (∞, n/b) if N > 0.

5 Conclusion
Due to its relative simplicity, the AK model (Rebelo, 1991) has gained an important
place within the new growth theory. By assuming that the marginal and average prod-
ucts of capital are always constant, this theory is able to predict endogenous and per-
sistently positive growth rates even in the absence of any technological progress. The
main drawback of the AK approach to economic growth, however, resides in the fact
that it cannot explain convergence: per-capita variables always grow at the same con-
stant rate (the model does not exhibit any transitional dynamics). In this paper we have
proposed a different way (alternative to other possible solutions proposed till now by
economic literature) to get back transitional dynamics in the AK model with exoge-
nous savings rate. Our idea consists in introducing a logistic-type population growth
law in an otherwise standard Solow-Swan model with linear aggregate technology.
As it is well known, the main problem behind the assumption of constant population
growth is that as time goes to infinity population size goes to infinity as well, which
is clearly unrealistic. Using the logistic, as opposed to the exponential, population
growth hypothesis (Verhulst, 1838) has the advantage that population size tends to a
finite saturation level in the very long-run. We have shown that under this hypothesis
the standard AK model is able to generate transitional dynamics. More generally, we
can conclude that the dynamics of the Solow-Swan model with AK production func-
tion and logistic population growth is richer than the one with exponential population
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growth. For future research it would be interesting to analyze whether and, eventu-
ally, how the logistic population growth hypothesis might affect the dynamics of other
and more sophisticated endogenous growth models (such as those with endogenous
technological progress).
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