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Abstract

This study examines optimal public policy in a product cycle model
where R&D firms innovate and imitate and households face non-
diversifiable risk. The government controls product cycles by two
policy instruments: patent length, i.e. the expected time an innova-
tion is imitated, and patent width, i.e. the innovator’s profit after a
successful imitation relative to that before. The main results are the
following. An increase in patent length or patent width slows down
economic growth. The more patient or the less risk averse the house-
holds, the longer and narrower the optimal patents.
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1 Introduction

A patent is an innovation protected by the authorities. In a growth model

of creative destruction, firms can step forward in the quality ladders of

technology by investing in R&D.1 If imitation is possible as well, then eco-

nomic growth is subject to product cycles as follows. Through the develop-

ment of new products, an innovator achieves a temporary advantage earning

monopoly profits. This advantage ends when an imitator succeeds in copying

the innovation, enters the market and starts competing with the innovator. I

define patent length as the time the patentee earns the full monopoly profit,2

and patent width (or breadth) as the innovator’s relative profit after and be-

fore the entry of a successful imitator.3 The purpose of this paper is to find

the welfare-maximizing patent shape (length + width) for an economy with

creative destruction and non-diversifiable risk.

In models with no uncertainty, patent length is commonly the expiration

time of the patent. In product cycle models, however, this is not appropriate,

because any patent is likely replaced by a new innovation before it would

expire. In that case, it is better to define patent length as the actual time

the patentee can exploit the monopoly profit.

In product cycle models, the assumption of the diversifiable risk simplifies

the analysis considerably: Firms can borrow any amount for R&D at a given

interest rate and households are protected from uncertainty through diver-

sification in the market portfolio. In that case, the optimal patent length

and patent width are obtained by maximizing the present value of a R&D

firm independently of the households’ behavior. In the literature assuming

implicitly that risk is diversifiable, the optimal patent shape is highly sensi-

tive to the firms’ cost structure. Some papers claim that “long and narrow”

patents are superior to “short and wide” patents, while some others claim

vice versa.4 The problem with the assumption of diversifiable risk, however,

1Cf. Grossman and Helpman (1991) (in ch. 4), and Aghion and Howitt (1998).
2This definition is also equivalent to Horii and Iwaisako’s (2007) concept of Intellectual

Property Rights (IPR).
3I other words, the more the patentee’s profit falls at the occurrence of imitation, the

narrower the patent. This definition is in line with cf. Denicolo (1996), Takalo (1998) and
Kanniainen and Stenbacka (2000).

4Cf. Denicolo (1996), Takalo (1998) and Kanniainen and Stenbacka (2000).
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Figure 1: Stages of the product cycle.

is that it contradicts the entire literature of venture capital which supposes

that firms cannot borrow without collateral and use their immaterial prop-

erty (e.g. patents) as collateral.5 Where households cannot wholly diversify

their investment risk, firms finance their R&D through issuing shares and

households purchasing these shares face the uncertainty associated with in-

vestment. In that case, patent policy depends on the households’ behavior

as well. For all the reasons given above, it would be instructive to examine

the optimal patent shape in an economy with non-diversifiable risk.

The structure of a product cycle model is characterized in Fig. 1. Let

0 be the starting time at which an innovation occurs, a the time at which

the innovation is imitated, a + b the time at which an innovation of the

next generation occurs. The innovator possesses the whole market during

the imitative period [0, a) and the share φ ∈ (0, 1) of the market during the

innovative period [a, a + b), while the imitator possesses the share 1 − φ of

the market during [a, a + b). If imitation is serially uncorrelated, then the

probability of a successful imitation is equal to the inverse of the time of the

imitation, 1/a. If innovation is serially uncorrelated, then the probability of

a successful innovation is equal to the inverse of the time of the innovation,

1/b. In this framework, patent length – i.e. the expected time in which

an innovation will be imitated – is given by a. if profit is proportional to

5A nice summary of this literature is given by Gompers and Lerner (1999).
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the market share, then patent width – i.e. the innovator’s relative profit (=

relative market share) after and before imitation – is given by φ. I shall

maximize welfare by patent length and patent width in the presence of non-

diversifiable risk.

In an earlier paper of mine, I examine the growth effects of competition

in a product cycle model (Palokangas 2008). In that paper, I extend Wälde’s

(1999a, 1999b) growth model with non-diversifiable risk for a multi-sector

economy and incorporate into it Segerstrom’s (1991) and Mukoyama’s (2003)

ideas on product cycles and cumulative technology, with the following results.

A little intensity of competition is growth diminishing. Only if the intensity of

competition exceeds a critical level, its increase enhances growth. In contrast

to Palokangas (2008), I assume in this document that the producers share

the market among themselves and that there is a benevolent government that

regulates the productivity of imitation and the innovator’s market share.

If competition had no direct effect on welfare, the government would have

no incentives to promote competition in patent policy. In order to construct

such a direct effect, I adopt Ethier’s (1982) assumption that households are

better off, if the same amount of resources are used to produce a broader

variety of products. In that case, competition in any industry raises every

household’s welfare through an increased number of firms and products.

In line with Aghion et al. (2001), I specify household preferences so

that labor supply is infinitely elastic, for simplicity. Aghion et al. (1997)

show that with inelastic labor supply wage movements mitigate the effect of

competition on growth. On the one hand, product market competition tends

to increase the demand for manufacturing workers within each industry, but

on the other hand the demand for R&D workers should simultaneously go

up as a result of the increased incentive for the firms to escape competition.

The resulting upward pressure on wages reduce the innovators’ incremental

rents and their incentives to innovate. The only difference is that Aghion

et al. (2001) use a utility function that is logarithmic in consumption, but

linear in labor supply, while I use a utility function with a constant rate

of risk aversion. In that case, I have to introduce infinitely elastic labor

supply through the assumption that the disutility of employment is in fixed

proportion to the “standard of living” (= the average consumption).
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As a result of all these modifications, I obtain optimal patent length and

patent width for an economy with non-diversifiable risk and product cycles.

The remainder of this paper is organized as follows. Section 2 presents the

structure of the model, section 3 proves the existence of the equilibrium

and section 4 constructs the product cycle. Sections 5 establishes welfare-

maximizing policy as functions of the rate of time preference.

2 The model

2.1 The markets

There is a large number of households that are placed evenly over the limit

[0, 1]. Household ι ∈ [0, 1] consumes the Cι units of the final good and

supplies Nι labor units. Because in the model there is no money that would

pin down the nominal price level at any time, it is convenient to normalize

the households’ total spending in consumption at unity:

Py = 1, y
.
=

∫ 1

0

Cιdι, (1)

where y is aggregate consumption and P the consumption price. Aggregate

labor supply (= all households’ labor supply) is equal to total labor devoted

to production, x, and total labor devoted to R&D,, l:

∫ 1

0

Nιdι = x + l. (2)

Competitive firms produce the consumption good from a great number

of intermediate goods that are evenly placed over the limit [0, 1]. In industry

j, there are nj firms that produce one unit of the same intermediate good

j ∈ [0, 1] from one labor unit. Aggregate consumption y is then produced

through Cobb-Douglas technology as follows:

ln y =

∫ 1

0

ln(Bjxj)dj, xj =

nj∑
κ=1

xjκ, (3)

where Bj is the productivity parameter in industry j, xj the quantity of

intermediate good j, nj the number of firms in industry j and xjκ the output

4



of firm κ in industry j. Total labor devoted to production is defined by

x =

∫ 1

0

xjdj. (4)

It is challenging to specify the producers’ strategic behavior in a prod-

uct cycle model. Mukoyama (2003) assumes Bertrand competition, under

which oligopolists earn zero profits in equilibrium. In an earlier paper of

mine, however, I show that there will be no growth without profits in a

product cycle model with non-diversifiable risk (Palokangas 2008). To ob-

tain positive profits in equilibrium, one could assume that the oligopolists’

products are imperfect substitutes (cf. Aghion at al. 1997, 2001, Palokangas

2008). Because this would excessively complicate the model, then, follow-

ing Segerstrom (1991), I opt for the assumption that oligopolists cooperate

in price settlement. This specification has two benefits. First, Segerstrom

shows that cooperation is a stable equilibrium in a product cycles model.

Second, any number of cooperating oligopolists charge the monopoly price.

If the oligopolists charged a lower price than a monopoly, the model would

again become excessively complicated. Therefore:

Assumption 1 The producers of an intermediate good share the market and

cooperate in price settlement. The entry of the (nj + 1)th producer in the

market decreases the market share of all the nj incumbent producers.

Although the oligopolists cooperate, they do not share the market equally.

The first producer, who is the innovator while the other are imitators in

the market, has some advantages (reputation, networking, etc.) by which it

captures a bigger market share than the others. I assume that government

regulations affect this market sharing, so that patent width, i.e. the innova-

tor’s relative profit after and before a successful imitation, can defined as the

government’s policy parameter.

Because R&D firms finance their expenditure by issuing shares and the

households save only in these shares, aggregate income is equal to the value

of consumption, Py, plus wages paid in R&D, wl, where w is the wage and

l labor devoted to R&D. Given (1), it is then true that
∫ 1

0

Aιdι = wl + Py = wl + 1, (5)
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where Aι is the income of household ι ∈ [0, 1] and
∫ 1

0
Aιdι aggregate income.

All households are risk averters and share the same preferences.

2.2 Preferences

The utility function of a single household ι ∈ [0, 1] is based on three principles.

First, in order to introduce the rate of risk aversion as a parameter of the

model, I assume the following:

Assumption 2 All households share the same preferences in which the rate

of time preference, ρ > 0, and the rate of relative risk aversion, ε ∈ (0, 1),

are constants.

Second, I adopt Ethier’s (1982) assumption that households are better

off, if the same amount of resources are used to produce a broader variety

of products. I specify this assumption in the form that an increase in the

number nj of firms in any industry j ∈ [0, 1] raises every household’s welfare:

Assumption 3 The level of a household’s utility is an increasing function

of the number of firms in the economy,
∫ 1

0
njdj:

f

(∫ 1

0

njdj

)
, f ′ > 0, f strictly concave. (6)

If households did not benefit from using the same amount of resources in a

broader variety of products, it would be socially optimal to produce all goods

by monopolies only.6

Third, I introduce infinitely elastic labor supply as follows:7

Assumption 4 In equilibrium, the disutility of employment in terms of con-

sumption – when utility is held constant – is in fixed proportion ξ to the “stan-

dard of living” (= the households’ average consumption in the economy, y).

6In subsection 5.1, the effect (i) would be missing and the scale of competition, β,
would be equal to zero.

7Aghion et al. (2001) introduce infinitely elastic labor supply by the assumption that
utility is logarithmic in consumption but linear in labor supply. Because I change loga-
rithmic utility ε = 1 into the constant rate ε ∈ (0, 1) of relative risk aversion, I have to
replace the linearity of labor supply in utility by assumption 4.
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The following temporary utility function u satisfies assumption 4:

u(Cι, Nι, y), ∂u/∂Cι > 0, ∂u/∂Nι < 0,

u strictly concave, u linearly homogeneous in (Cι, y),

dCι

dNι

∣∣∣∣
u constant,Cι=y

= −
(

∂u

∂Nι

/
∂u

∂Cι

)

Cι=y

= ξy, (7)

where Cι is household ι’s consumption, Nι its labor supply, ∂Cι/∂Nι its

disutility of employment, y average consumption and ξ > 0 a constant.8

Given assumptions 2, 3 and 4, I can write household ι’s inter-temporal

utility beginning at time T as follows:

U(Cι, T ) = E

∫ ∞

T

f

(∫ 1

0

njdj

)
u(Cι, Nι, y)1−εe−ρ(t−T )dt, (8)

where t is time and E the expectation operator.

2.3 Research and development (R&D)

The productivity parameter in industry j [cf. (3)] is determined by

Bj
.
= µτj , µ > 1, (9)

where µ is a parameter and τj an index of technology in industry j. The

invention of a new technology in industry j raises the index τj by one and

the level of productivity by µ > 1.

In any industry, there can be either innovative R&D that aims at creating

a new state-of-the-art product in the industry, or imitative R&D that aims

at creating a close substitute for the incumbent state-of-the-art product at

the same level of technology. I denote the set of imitative industries by Θ

and that of innovative industries by [0, 1] \Θ.

I assume that all firms doing innovative R&D learn from each others. In

each innovative industry j ∈ [0, 1] \ Θ, firms ` ∈ {1, ..., nj} employ labor lj`

in innovative R&D. This produces the total spillover effect

∫

k∈[0,1]\Θ

nk∑

`=1

lk`dk =

∫

k/∈Θ

nk∑

`=1

lk`dk

8Examples of the functions (7) are u =
(
C1−θ

ι − ξy1−θNι

)
/(1− θ) and

u =
(
Cι − ξyNι

)1−θ
/(1− θ), where θ ∈ (0, 1) ∪ (1,∞) is a constant.
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for all firms doing innovative R&D. When firm κ in industry j innovates, its

technological change follows a Poisson process qjκ in which the arrival rate

of innovations, Λjκ, is given by

Λjκ = λl1−δ
jκ

(∫

k/∈Θ

nk∑

`=1

lk`dk

)δ

,

λ > 0, 0 < δ < 1, (10)

where λ and δ are constants. During a short time interval dt, there is an

innovation dqjκ = 1 in firm κ with probability Λjκdt, and no innovation

dqjκ = 0 with probability 1− Λjκdt.

The specification (10) has the following useful property. In the symmetric

equilibrium where all innovative firms employ the same amount of labor (i.e.

lk` = ljκ for all k /∈ Θ and `) and each innovative industry has the same

number of firms (i.e. nk = nj for all k /∈ Θ), the arrival rate of innovations

per firm, Λjκ, is in fixed proportion λ to labor input per innovative firm,

ljκ, times the spillover effect, (njβ)δ, which is an increasing function of the

number of innovative firms in the economy, njβ.

When firm κ in industry j imitates, its technological change follows a

Poisson process Qjκ in which the arrival rate of imitations is in fixed propor-

tion λ/a to the firm’s own labor input ljκ:
9

Γjκ = (λ/a)ljκ, a > 0. (11)

During a short time interval dt, there is an imitation dQjκ = 1 with probabil-

ity Γjκdt, and no imitation dQjκ = 0 with probability 1−Γjκdt. The relative

productivity between imitative and innovative R&D, a, characterizes patent

length. The more government regulations hamper imitation, the bigger a and

the longer time it takes to produce a successful imitation for an invention.

Given this, I define patent length a as the government’s policy parameter.

Each R&D firm distributes its profit among those who had financed it

in proportion to their investment in the firm. Because both innovation and

imitation follow a Poisson process, the values of shares in R&D projects are

random variables and household ι ∈ [0, 1] maximizes its utility (8) subject to

the random development of these values.

9I ignore spillover effect for imitative R&D, for simplicity. When all imitative firms are
subject to constant returns to scale with respect to their own input, they all behave as if
there were a single imitative firm in each industry.

8



3 The steady-state equilibrium

In this section, I prove the existence of the following equilibrium:

Definition. The economy is in a stationary-state equilibrium, if the follow-

ing properties are satisfied:

(i) The industries j are run either by monopolies (nj = 1) or duopolies

(nj = 2). Non-producing outsiders imitate to enter any of the monopoly

industries and the incumbent duopolists innovate to become a monopoly

in the same industry. The profits of a typical monopoly and a typical

duopolist are constant over time.

(ii) The proportions of monopoly and duopoly industries in the economy

(denoted α and β, respectively) are constants over time. Every time a

new superior-quality product is discovered in some industry, changing

this from a duopoly into a monopoly, imitation must occur in some

other industry, changing this from a monopoly into a duopoly.

(iii) The average growth rate of consumption, g, the wage w, total labor

in manufacturing, x, and total labor in R &D, l, the labor input η of

a typical innovative firm in R&D and the labor input ψ of a typical

imitative firm in R&D are constants over time.

3.1 The manufacturing of goods

The representative consumption-good firm maximizes its profit

Πc .
= Py −

∫ 1

0

pjxjdj

subject to technology (3), given the output price P and the input prices pj.

Noting (1), this implies

Πc = 0, pj = P
∂y

∂xj

= P
y

xj

=
1

xj

for all j. (12)

All intermediate-good firms produce one unit of their output from one la-

bor unit. The product of the newest generation provides exactly the constant

µ > 1 times as many services as that of earlier generation. A firm of earlier
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generation earns the profit Πo
j = (po

j −w)xo
j , where po

j is its output price and

xo
j its output. Every firm with the newest technology pushes and keeps the

firms with older technology out of the market by choosing its price pj so that

these earn no profit, Πo
j = 0 and po

j = w. This yields pj/µ = po
j = w. This,

(3), (4) and (12) yields the equilibrium conditions:

pj = µw, xj =
1

pj

=
1

µw
= x, Πj = (pj − w)xj = Π

.
= 1− 1

µ
> 0. (13)

Because a successful innovation crowds out all incumbent producers in a

market, the innovator is always the first producer, while the later entrants

are imitators. Given assumption 1, it is then true that:

(a) The innovator will earn the constant profit Π as long as it remains the

monopoly producer in the industry. Because a household holds the

share of all firms in its same portfolio, it does not invest in innovative

R&D in the monopoly industries.

(b) If anyone invests in imitative R&D to enter a monopoly industry j, then

its prospective profit is Πj2, but if it does that (with the same cost) to

enter an industry j with κ > 1 producers, then its prospective profit

is smaller than Πj2. Thus, it invest in imitative R&D only to enter a

monopoly industry, but not to enter an oligopoly industry. This means

that there can be at most two producers in an industry.

From (a) and (b) above it follows that in equilibrium there are only monopoly

industries with imitative R&D or duopoly industries with innovative R&D.

This and (13) prove the property (i) of a stationary-state equilibrium.

I denote the set of monopoly industries by Θ ⊂ [0, 1]. The proportions of

duopoly and monopoly industries (β and α, respectively) are then given by

β
.
=

∫

j /∈Θ

dj, α =

∫

j∈Θ

dj = 1− β. (14)

Thus, the property (ii) of a stationary-state equilibrium is proven. Tang and

Wälde (2001) call the proportion of duopoly industries, β, as the scale of

competition. The profits in the economy are determined as follows:

Proposition 1 In monopoly industries j ∈ Θ, the innovator earns the entire

monopoly profit Π, while in duopoly industries j /∈ Θ, the innovator earns a
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smaller profit φΠ and the imitator earns the rest of the monopoly profit in the

industry, (1−φ)Π, where φ ∈ [0, 1] is the patent width parameter determined

by the government.

3.2 Economic growth

According to the properties (i) and (ii) of a stationary-state equilibrium,

duopolists labeled 1 and 2 innovate and none imitates in duopoly industries

j /∈ Θ, while outsiders imitate and none innovates in monopoly industries j ∈
Θ. Because according to technology (11) imitation yields constant returns

to scale, all outsiders in monopoly industry j ∈ Θ behave as if there were a

single outsider firm labeled 0. The structure of industries is given by Fig. 2.

number of firms

industries1

1

2

α=1−β β

(called R&D firm 0)

(called R&D firms
1 and 2)one imitating outsider

one monopoly, which
neither innovates

nor imitates two innovating
duopolists

Figure 2: Competition and the number of firms in the economy.

In duopoly industries j /∈ Θ the two producers employ lj1 + lj2 and in

monopoly industries j ∈ Θ the outsider employs lj0 labor units in R&D.

Total employment in R&D, l, is the sum of all firms’ employment in R&D:

l
.
=

∫

j /∈Θ

(lj1 + lj2)dj +

∫

j∈Θ

ljdj. (15)

Given (9), the average productivity in the economy, B, is defined as a function
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of the technologies τj of all industries j ∈ [0, 1] as follows:

ln B
.
=

∫ 1

0

ln Bjdj = (ln µ)

∫ 1

0

τjdj. (16)

The arrival rate of innovations in duopoly industry j /∈ Θ is the sum of

the arrival rates of both duopolists in that industry, Λj1 + Λj2 [Cf., (10)].

Because only duopoly industries j /∈ Θ innovate, then the average growth

rate of the average productivity B({tk}) in the stationary state is given by

g
.
= (ln µ)

∫ 1

0

Pr(τj increases by one)dj = (ln µ)

∫

j /∈Θ

(Λj1 + Λj2)dj, (17)

where Pr(·) denotes the probability.

3.3 Innovation and imitation

In monopoly industry j ∈ Θ outsider 0 and in industry j /∈ Θ duopolists 1

and 2 issue shares to finance their labor expenditure in R&D. Because the

households ι ∈ [0, 1] invest in these shares, one obtains

∫ 1

0

Sιj0dι = wlj0 for j ∈ Θ,

∫ 1

0

Sιjκdι = wljκ for κ ∈ {1, 2} and j /∈ Θ,

(18)

where wlj0 is the imitative expenditure of outsider 0 in monopoly industry j ∈
Θ, wljκ the innovative expenditure of duopolist κ ∈ {1, 2} in industry j /∈ Θ,

Sιj0 household ι’s investment in outsider firm 0 in monopoly industry j ∈ Θ,

Sιjκ household ι’s investment in duopolist κ in industry j /∈ Θ,
∫ 1

0
Sιj0dι

aggregate investment in outsider firm 0 in monopoly industry j ∈ Θ, and∫ 1

0
Sιjκdι aggregate investment in duopolist κ in industry j /∈ Θ. Household

ι’s relative investment shares in outsiders 0 and duopolists κ ∈ {1, 2} are

iιj0
.
=

Sιj0

wlj0
for j ∈ Θ; iιjκ

.
=

Sιjκ

wljκ
for j /∈ Θ. (19)

When household ι has financed a successful R&D firm, it acquires the

right to the firm’s profit in proportion to its relative investment share. Noting

proposition 1, the profit sharing can then be characterized as follows:
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sιjκ household ι’s profit from duopolist κ ∈ {1, 2} in industry j /∈ Θ;

iιjκ household ι’s investment share in duopolist κ ∈ {1, 2} in industry j /∈ Θ

[cf. (19)];

Π the profit that duopolist κ ∈ {1, 2} in industry j /∈ Θ shall earn after

innovation has changed it into a monopoly;

Πiιjκ the profit that household ι shall get from duopolist κ ∈ {1, 2} in in-

dustry j /∈ Θ after innovation has changed this into a monopoly;

sιj0 household ι’s profit from outsider 0 in industry j ∈ Θ;

iιj0 household ι’s investment share in outsider 0 in industry j ∈ Θ [cf. (19)];

φΠ the profit that the innovator in industry j ∈ Θ shall earn after a suc-

cessful imitation of its product;

(1− φ)Π the profit that outsider 0 in industry j ∈ Θ shall earn after imita-

tion has changed it as the second duopolist;

(1− φ)Πiιj0 the profit that household ι shall get from outsider 0 in industry

j ∈ Θ after imitation has changed it into the second duopolist.

The changes in the profits of firms in industry j are functions of the

increments (dqj1, dqj2, dQj0) of Poisson processes (qj1, qj2, Qj0) as follows:10

dsιjκ = (Πiιjκ − sιjκ)dqjκ − sιjκdqj(ζ 6=κ) when j /∈ Θ;

dsιj0 = [(1− φ)Πiιj0 − sιj0]dQj0 when j ∈ Θ;

dsιj1 = (φΠiιj1 − sιj1)dQj0 when j ∈ Θ. (20)

These functions can be explained as follows. If a household invests in in-

novative duopolist κ in industry j /∈ Θ, then, in the advent of a success

for that duopolist, dqjκ = 1, the amount of its share holdings rises up to

Πiιjκ, i.e. dsιjκ = Πiιjκ − sιjκ, but in the advent of success for the other

duopolist ζ 6= κ, its share holdings in duopolist κ fall down to zero, i.e.

dsιjκ = −sιjκ. If a household invests in imitative outsider 0 in monopoly

10This extends the idea of Wälde (1999a, 1999b).
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industry j ∈ Θ, then, in the advent of a success for outsider 0, dQj0 = 1, the

amount of its share holdings in that outsider 0 rises up to (1 − φ)Πiιj0, i.e.

dsιj0 = (1−φ)Πiιj0− sιj0, but the amount of its share holdings in incumbent

monopoly 1 falls down to φΠiιj1, i.e. dsιj1 = φΠiιj1 − sιj1.
11

3.4 Households

Because investment in shares in R&D firms is the only form of saving in the

model, the budget constraint of household ι is given by

Aι = PCι +

∫

j∈Θ

Sιj0dj +

∫

j /∈Θ

(Sιj1 + Sιj2)dj, (21)

where Aι is the household’s total income, Cι its consumption, P the consump-

tion price, Sιj0 the household’s investment in outsider firm 0 in monopoly

industry j ∈ Θ, and Sιjκ the household’s investment in duopolist κ in indus-

try j /∈ Θ. Household ι’s total income Aι consists of its wage income (= the

wage w times its labor supply Nι) wNι, its profits sιj1 from the monopoly in

each industry j ∈ Θ and its profits sιj1 and sιj2 from the duopolists 1 and 2

in each industry j /∈ Θ. This yields

Aι = wNι +

∫

j∈Θ

sιj1dj +

∫

j /∈Θ

(sιj1 + sιj2)dj. (22)

Household ι maximizes its utility (8) by its investment, {Sιj0} for j ∈ Θ

and {Sιj1, Sιj2} for j /∈ Θ, subject to its budget constraint (21), the stochas-

tic changes (20) in its profits, the composition of its income, (22), and the

determination of its relative investment shares, (19), given the arrival rates

{Λjκ, Γj0}, the wage w and the consumption price P . In the Appendix, this

maximization problem is solved by dynamic programming, with the following

results.12 In the households’ stationary equilibrium in which the allocation

of resources is invariable across technologies, it is true that

w and x are constants, (23)

β =
1

2

(
1− φ

µ1−εa

)1/δ

,

ljκ = η, for j /∈ Θ,
lj0 = ψ

.
= (l − 2βη)/(1− β) for j ∈ Θ,

(24)

11Household ι knows that the two producers profits must sum up to Π. Because it does
not invest in incumbent monopoly 1, the investment share iιj1 does not change.

12A detailed proof will be delivered to a reader on request. The dynamic program is
similar to that in Palokangas (2008).
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ρ +
1− µ1−ε

ln µ︸ ︷︷ ︸
−

g =
(2β)δλΠµ1−ε

(1 + wl)w
, (25)

Λjκ = (2β)δλη for j /∈ Θ and κ ∈ {1, 2}, g =
(
21+δλ ln µ

)
β1+δη, (26)

where η (ψ) is the labor input of a single innovative (imitative) firm. Given

(24) and (26), the property (iii) of a stationary-state equilibrium is proven.

In (23), the wage w is fixed, because the disutility of employment is pro-

portional to average consumption y. This and the firm’s equilibrium condi-

tions (13) lead to fixed output x per industry. Results (24) can be explained

as follows. An increase in β above the equilibrium increases the spillover of

knowledge and the productivity of R&D for each innovative firm. Conse-

quently, there will be more innovations that change duopoly industries into

monopolies and β will fall. A decrease in β below the equilibrium decreases

the spillover of knowledge and the productivity of R&D for each innovative

firm. Consequently, there will be less innovations that change duopoly indus-

tries into monopolies and β will rise. Thus, there exists a stable equilibrium

for the proportion of innovative duopoly industries, β. With longer or wider

patents (i.e. a bigger a or φ), there are more incentives to invest in inno-

vative firms to escape competition. With higher investment per innovative

firm, more duopolies change into monopolies and the proportion of duopoly

industries, β, falls. Thus, the equilibrium level of β falls with both a and φ.

According to (25), a household’s subjective discount factor

ρ +
1− µ1−ε

ln µ
g (27)

is equal to the marginal rate of return to savings,

1

2

(
1− φ

µ1−εa

)1/δ

.

(28)

A higher proportion β of innovative duopoly industries increases the spillover

of knowledge, the productivity of R&D for each innovative firm and the

marginal rate of return to savings, (28). With more labor in R&D (i.e. a

higher l), the marginal product of R&D falls. Because households invest

their savings in R&D, then the marginal rate of return to savings, (28), falls

as well. In (26), the growth rate g is in fixed proportion to the proportion of

innovative industries, β, directly and through spillovers βδ.
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4 The product cycle

Differentiating the logarithm of the first-equation (25) totally, and noting

µ > 1, one obtains employment in R&D, l, as the following function:

l(g, β, ρ, ε),
∂l

∂β
=

δ

β

( 1

w
+ l

)
> 0,

∂l

∂g
=

1− µ1−ε

ln µ︸ ︷︷ ︸
−

∂l

∂ρ︸︷︷︸
−

> 0,

∂l

∂ρ
= −

(
ρ +

1− µ1−ε

ln µ
g
)−1( 1

w
+ l

)
< 0,

∂l

∂ε
= −

[
ln µ︸︷︷︸

+

+
(
ρ +

1− µ1−ε

ln µ
g

︸ ︷︷ ︸
+

)−1

gµ(1−ε)

︸ ︷︷ ︸
+

]( 1

w
+ l

)
< 0. (29)

Given the property (ii) of the stationary-state equilibrium, the rate at which

industries leave the group of duopoly industries k /∈ Θ in a small interval dt,

β(Λj1 + Λj2)dt, is then equal to the rate at which the industries leave the

group of monopoly industries j ∈ Θ, αΓj0dt in that interval dt:

β(Λk1 + Λk2) = αΓj0 for k /∈ Θ and j ∈ Θ. (30)

Given equations (11), (24), (26) and (30), one obtains

1 =
Λk1 + Λk2

αΓj0/β
=

(2β)δaη

(1− β)lj0/β
=

(2β)δaη

(1− β)ψ/β
=

(2β)δaη

l/β − 2η
.

From this, (26) and (29) it follows that labor per innovative firm and the

growth rate are determined by η = l(g, β, ρ, ε)/
{
β[2 + (2β)δa]

}
and

g = (2λ ln µ)
l(g, β, ρ, ε)

21−δβ−δ + a
.
= J(g, β, a, ρ, ε),

∂J

∂g
=

g

l

∂l

∂g
> 0,

∂J

∂a
< 0,

∂J

∂β
=

g

l

∂l

∂β
+

δgβ−δ−1

21−δβ−δ + a
> 0. (31)

The right-hand equation (31) defines the growth rate g as a function of

(a, ρ, ε). Unfortunately, the variable g appears in both sides of the equation,

which makes this dependence mathematically ambiguous. This ambiguity

can be eliminated by the stability properties of the model. Assume that

vector (a, ρ, ε) changes so that J(g, β, a, ρ, ε) increases.13 This raises the

13Formally, this can be proven as follows. Assume that an increase in the growth rate g
is in fixed proportion $ > 0 to the perturbation J(g, β, a, ρ, ε) − g from the equilibrium:
ġ = $[J(g, β, a, ρ, ε)−g]. This system has a stable equilibrium only if ∂ġ/∂g = $[∂J/∂g−
1] < 0, which is equivalent to ∂J/∂g < 1.
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growth rate g by the same amount, which generates a further increase ∂J/∂g

in J . If ∂J/∂g < 1, there will be a sequence of dampening increases in

g until a new equilibrium is attained. If ∂J/∂g > 1, then there will be

ever accelerating increases in g and the system will never end up with an

equilibrium. Because the comparative static properties of a constant-growth

equilibrium cannot be analyzed by an unstable model,14 I assume ∂J/∂g < 1.

Given 0 < ∂J/∂g < 1, (24) and (25), the comparative statics of the equation

(31) implies the function

g = G(β, a, ρ, ε),
∂G

∂a
.
=

∂J

∂a

/(
1− ∂J

∂g

)
< 0,

∂G

∂β
.
=

∂J

∂β

/(
1− ∂J

∂g

)
> 0,

dG

da
=

∂G

∂a︸︷︷︸
−

+
∂G

∂β︸︷︷︸
+

∂β

∂a︸︷︷︸
−

< 0,
dG

dφ
=

∂G

∂β︸︷︷︸
+

∂β

∂φ︸︷︷︸
−

< 0. (32)

This result can be rephrased as follows:

Proposition 2 An increase in patent length a or patent width φ slows down

economic growth (i.e. decreases g).

According to (32), patent shape affects the growth rate through two channels:

The scale-of-competition effect. With longer or wider patents, there are more

incentives to invest in innovative R&D firms to escape competition.

With higher investment per innovative firm, more duopolies will end

up as monopolies and the proportion of innovating industries (= the

scale of competition), β, will fall. This will slow down economic growth.

The direct effect. Assume that patent length a is increased, but patent width

φ is decreased to hold the proportion of innovating industries, β, con-

stant [cf. (24)]. In that case, there are less imitative firms flowing

to the group of innovative firms. Consequently, in equilibrium, there

must be less successful innovations transferring firms to the group of

imitative firms. With less innovations, the growth rate will be lower.

14Only in a stable system, a small change of the vector (a, ρ, ε) generates a small change
in the equilibrium value of the endogenous variable g.
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Patent length a promotes economic growth directly and through the scale

of competition, but patent width φ only through the latter. This difference

enables the control of the growth rate g and the scale of competition, β, by

patent length a and patent width φ.

5 The government

Noting (1), (2), (3), (4), (16), (29) and the symmetry across the households

ι ∈ [0, 1], one obtains consumption y as:

Cι = y = xB for ι ∈ [0, 1], Nι = x + l for ι ∈ [0, 1]. (33)

Noting (6), (7), (14), (29) and (33), I define the function

c(g, β, ρ, ε)
.
=

f(
∫ 1

0
njdj)

B1−ε
u(Cι, Nι, y)1−ε = f(1 + β)x1−εu(1, x + l, 1)1−ε,

1

c

∂c

∂g
=

1− ε

u

∂u

∂Nι

∂l

∂g
=

1− ε

u︸ ︷︷ ︸
+

∂u

∂Nι︸︷︷︸
−

(
ρ +

1− µ1−ε

ln µ
g

︸ ︷︷ ︸
+

)−1 µ1−ε − 1

ln µ︸ ︷︷ ︸
+

( 1

w
+ l

︸ ︷︷ ︸
+

)
< 0,

1

c

∂c

∂β
=

1− ε

u

∂u

∂Nι

∂l

∂β
+

f ′

f
=

1− ε

u︸ ︷︷ ︸
+

∂u

∂Nι︸︷︷︸
−

δ

β

( 1

w
+ l

)

︸ ︷︷ ︸
+

+
f ′(1 + β)

f(1 + β)︸ ︷︷ ︸
+

. (34)

Noting this, a single household’s utility function (8) takes the form

U(Cι, T ) = E

∫ ∞

T

c(g, β, ρ, ε)B({tk})1−εe−ρ(ν−T )dν. (35)

The government maximizes a household’s welfare (35) subject to stochas-

tic technological change (10). Noting (24) and (32), the growth rate g and

the scale of competition, β, can be controlled by patent length a and patent

width φ. Thus, the maximization can be carried out by using the growth rate

g and the scale of competition, β as control variables. Later on, the optimum

can be transformed into the terms of patent and competition policy (a, φ).

I denote by Υ({tk}) the value of any industry using current technology tk,

and by Υ
(
tj +1, {tk 6=j}

)
the value of industry j using technology tj +1, when

other industries k 6= j use current technology tk. In each duopoly industry

j /∈ Θ, the arrival rate of innovations that change technology from tj to tj+1
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is equal to Λj1 + Λj2, while there are no innovations in monopoly industries

j ∈ Θ. Noting this, the Bellman equation for the government’s program is15

ρΥ({tk}) = max
g,β

F(g, β, ρ, ε), where

F(g, β, ρ, ε)
.
=

c(g, β, ρ, ε)

Bε−1
+

∫

j /∈Θ

(Λj1 + Λj2)
[
Υ

(
tj + 1, {tk 6=j}

)−Υ
({tk}

)]
dj.

Because in equilibrium technological change is symmetric throughout all in-

novative industries,

Υ
(
tj + 1, {tk 6=j}

)−Υ
({tk}

)
= Υ

(
tι + 1, {tk 6=ι}

)−Υ
({tk}

)
for j /∈ Θ,

then, noting (17), this Bellman equation changes into

ρΥ({tk}) = max
g,β

F(g, β, ρ, ε), where

F(g, β, ρ, ε) =
c(g, β, ρ, ε)

Bε−1
+

[
Υ

(
tι + 1, {tk 6=ι}

)−Υ
({tk}

)] ∫

j /∈Θ

(Λj1 + Λj2)dj

=
c(g, β, ρ, ε))

B({tk})ε−1
+

[
Υ

(
tι + 1, {tk 6=ι}

)−Υ
({tk}

)] g

ln µ
. (36)

Provided that the function c(g, β, ρ, ε) is strictly concave in (c, g), the function

F(g, β, ρ, ε) is strictly concave in (c, g) as well. In that case, the government’s

optimum is unique and one can apply comparative statics on public policy.

5.1 The optimal scale of competition

Noting (34) and (36), one obtains

β = arg max
β
F(g, β, ρ, ε) = arg max

β
c(g, β, ρ, ε). (37)

This can be rephrased as:

Proposition 3 The welfare-maximizing scale of competition, β, maximizes

temporary utility c at every moment of time.

The scale of competition, β, has two opposite effects on temporary utility c:

(i) It increases the variety of products and temporary utility c.

15Cf. Dixit and Pindyck (1994).
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(ii) Because duopolies employ more workers in manufacturing than mo-

nopolies, a larger proportion of duopolies, β, increases employment in

manufacturing and the wage. With a higher wage, output per firm

is lower in the production of the consumption good. This decreases

consumption and temporary utility c.

The scale of competition, β, maximizes consumption when the opposite ef-

fects (i) and (ii) are in balance. The first-order condition corresponding to

(37) is ∂c/∂β = 0. Given (34), this is equivalent to

βf ′(1 + β)

f(1 + β)
= − δ

1− ε

u︸ ︷︷ ︸
+

∂u

∂Nι︸︷︷︸
−

( 1

w
+ l

)

︸ ︷︷ ︸
+

. (38)

5.2 The optimal growth rate

I try the solution that the value function is of the form

Υ({tk}) = cB({tk})1−ε/ϑ (39)

where ϑ is independent of the endogenous variables of the system. From (9),

(16) and (39) it then follows that

Υ
(
tj + 1, {tk 6=j}

)

Υ({tk}) =

(
B

(
tj + 1, {tk 6=j}

)

B({tk})
)1−ε

=

(
Bj(tj + 1)

Bj(tj)

)1−ε

= µ1−ε.

(40)

Inserting (39) and (40) into the Bellman equation (36), I obtain

ρ = ϑ + (µ1−ε − 1)

∫

j /∈Θ

(Λj1 + Λj2)dj = ϑ + (µ1−ε − 1)
g

ln µ

and

ϑ = ρ +
1− µ1−ε

ln µ
g. (41)

Noting (34), (36), (39), (40) and (41), one obtains

∂F
∂g

= B1−ε ∂c

∂g
+

1

ln µ

[
Υ

(
tι + 1, {tk 6=ι}

)−Υ
({tk}

)]

= B1−ε ∂c

∂g
+

µ1−ε − 1

ln µ
Υ({tk}) =

ϑ

c
Υ({tk})∂c

∂g
+

µ1−ε − 1

ln µ
Υ({tk})

=

[
ϑ

c

∂c

∂g
+

µ1−ε − 1

ln µ

]
Υ({tk}) =

[(
ρ +

1− µ1−ε

ln µ
g

)
1

c

∂c

∂g
+

µ1−ε − 1

ln µ

]
Υ({tk})
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=

[
1− ε

u

∂u

∂Nι

µ1−ε − 1

ln µ

( 1

w
+ l

)
+

µ1−ε − 1

ln µ

]
Υ({tk})

=

[
1− ε

u

∂u

∂Nι

( 1

w
+ l

)
+ 1

]
µ1−ε − 1

ln µ
Υ({tk}) = 0.

Noting this and (38), one obtains that labor devoted to R&D, l, and the

scale of competition, β, are constants:

[
ε− 1

u(1, Nι, 1)

∂u(1, Nι, 1)

∂Nι

]

Nι=x+l

( 1

w
+ l

)
= 1,

d log f

dβ
=

βf ′(1 + β)

f(1 + β)
= δ.

(42)

These equations fix l and β and yield the following result:

Proposition 4 The scale of competition, β, should be extended up to the

point at which the elasticity of output with respect to β – holding labor input x

and the level of productivity, B, constant – is equal to the spillover parameter

δ in the production function of the innovative R &D firm. At the optimum,

both labor devoted to R &D, l̃, and the scale of competition, β̃, are independent

of the rate of time preference, ρ, and the rate of risk aversion, ε.

Noting (42) and (29) yield l(g, β, ρ, ε) = l̃. Differentiating this equation

totally and noting (29), one obtains

g(ρ, ε),
∂g

∂ρ
= − ∂l

∂ρ︸︷︷︸
−

/
∂l

∂g︸︷︷︸
+

> 0,
∂g

∂ε
= − ∂l

∂ε︸︷︷︸
−

/
∂l

∂g︸︷︷︸
+

> 0. (43)

This result can be rephrased as follows:

Proposition 5 If the households become more patient (i.e. ρ falls) or less

risk averse (i.e. ε falls), then the welfare-maximizing growth rate decreases.

In this result, the most dominating effect is the following. If households

become more patient or less risk averse, then the discount factor (27) falls

for a given growth rate g. In that case, the growth rate g must fall to keep

the discount factor (27) equal to the marginal rate of return to savings, (28)

[cf. µ > 1 and (25)].
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5.3 The optimal shape of patents

From (31), (42), (43) and proposition 4 it follows that

g(ρ, ε) = (2λ ln µ)l̃/[21−δβ̃−δ + a],

where l̃ and β̃ are constants. Solving for a and noting (43) yield the function

a(ρ, ε)
.
=

(2λ ln µ)l̃

g(ρ, ε)
− 21−δβ̃−δ,

∂a

∂ρ
< 0,

∂a

∂ε
< 0. (44)

Finally, given (24), (44) and µ > 1, one obtains

φ(ρ, ε)
.
= 1− (2β̃)δa(ρ, ε)µ1−ε,

∂φ

∂ρ
= −(2β̃)δµ1−ε ∂a

∂ρ
> 0,

∂φ

∂ε
= (2β̃)δµ1−ε

[
a ln µ︸︷︷︸

+

− ∂a

∂ε︸︷︷︸
−

]
> 0. (45)

The results (44) and (45) can be rephrased as follows:

Proposition 6 The more patient (i.e. the smaller ρ) or the less risk averse

(i.e. the smaller ε) the households, the longer and narrower the optimal

patents (i.e. the bigger a and the smaller φ).

With more patient or less averse households the welfare-maximizing growth

rate is lower (cf. proposition 5). This low growth rate can be implemented

either long or wide patents (cf. proposition 2). Because patent length a pro-

motes economic growth both directly and through the scale of competition,

β, but patent width φ only through the latter, it is more efficient to slow down

growth by increasing patent length and to hold the scale of competition, β,

at the optimal level (cf. proposition 4) by decreasing patent width.

6 Conclusions

This study examines a multi-industry economy in which growth is generated

by creative destruction. In each industry, a firm that creates the newest

technology by a successful innovation crowds out the other firms with older

technologies from the market and becomes the first producer of the industry.
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A firm creating a copy of the newest technology starts producing the inno-

vator’s product and establishes an innovation race with the first producer.

Because systematic investment risk cannot be eliminated by diversification,

the households hold the shares of all firms in their portfolios.

Innovations are protected by patents. Some patent regulations increase

the expected time a patent will be imitated (i.e. patent length), while the

others increase the innovator’s market share after a successful imitation (i.e.

patent width). With these two instruments, the government can control

innovative and imitative R&D, economic growth and social welfare. The

main findings are as follows.

An increase in patent length or patent width slows down economic growth.

Patent shape affects the growth rate through two channels:

The scale-of-competition effect. With longer or wider patents, there are more

incentives to invest in innovative R&D firms to escape competition.

With higher investment per innovative firm, more duopolies will end

up as monopolies and the proportion of innovating industries (= the

scale of competition) will fall. This will slow down economic growth.

The direct effect. Assume that patent length is increased, but patent width

is decreased to hold the proportion of innovating industries constant.

In that case, there are less imitative firms flowing to the group of inno-

vative firms. Consequently, in equilibrium, there must be less successful

innovations transferring firms to the group of imitative firms. With less

innovations, the growth rate will be lower.

Patent length promotes economic growth directly and through the scale of

competition, but patent width only through the latter. This difference en-

ables that the government can control the growth rate and the scale of com-

petition independently. If the households become more patient or less risk

averse, then the welfare-maximizing growth rate decreases. In that case, the

discount factor falls for a given growth rate, and the growth rate must fall

to keep the discount factor equal to the marginal rate of return to savings.

The more patient or the less risk averse the households, the longer and

narrower the optimal patents. In that case, the welfare-maximizing growth

rate is low and this low growth rate can be implemented by either long or wide
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patents. Because patent length promotes economic growth both directly and

through the scale of competition, but patent width only through the latter,

it is better to lengthen patents in order to slow down economic growth and

to narrow patents in order to hold the scale of competition constant.

Appendix

Noting (14), household ι’s expected utility (8) can be written as follows:

U(Cι, T ) = E

∫ ∞

T

f(1 + β)u(Cι, Nι, y)1−εe−ρ(t−T )dt.

Because the household takes the proportion of duopoly industries, β, as given,

it is equivalent to maximize

E

∫ ∞

T

u(Cι, Nι, y)1−εe−ρ(t−T )dt. (46)

Technology τk changes randomly in each industry k. I denote:

{sιkυ} vector of sιkυ for k ∈ [0, 1] and υ ∈ {0, 1, 2},

{sι(k 6=j)υ} vector of sιkυ for k ∈ [0, 1], k 6= j and υ ∈ {0, 1, 2},

{τk} vector of τk for k ∈ [0, 1],

{τk 6=j} vector of τk for k ∈ [0, 1] and k 6= j.

I denote variables depending on {τk} by superscript {τk}. Thus,C
{τk}
ι is

household ι’s current consumption, y{τk} current average consumption, w{τk}

the current wage, P {τk} the current price and

u{τk} .
= u(C{τk}

ι , N{τk}
ι , y{τk}). (47)

I define the value functions:

Ω
({sιkυ}, {τk}

)
the value of receiving profits sιkυ from all firms υ in all in-

dustries k using current technology τk.
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Ω
(
Πiιjκ, 0, {sι(k 6=j)υ}, τj + 1, {τk 6=j}

)
the value of receiving the profit Πiιjκ

from firm κ in industry j /∈ Θ using technology τj +1, but receiving no

profits from the other firm that was a producer in that industry when

technology τj was used, and receiving profits sι(k 6=j)υ from all firms υ

in other industries k 6= j with current technology τk.

Ω
(
φΠiιj1, (1− φ)Πiιj0, {sι(k 6=j)υ}, {τk}

)
the value of receiving profit φΠiιj1

form firm 1 and profit (1 − φ)Πiιj0 from firm 2 in industry j ∈ Θ,

but profits sι(k 6=j)υ from all firms υ in the other industries k 6= j with

current technology τk.

Let Λjκ be the arrival rate of innovations that change duopolist κ into a

monopoly in industry j /∈ Θ. Each of these innovations increases the value

of that duopolist by the amount

Ω
(
Πiιjκ, 0, {sι(k 6=j)υ}, τj + 1, {τk 6=j}

)− Ω
({sιkυ}, {τk}

)
,

Let Γj0 be the arrival rate of imitations that change outsider 0 into the second

duopolist in industry j ∈ Θ. Each of these imitations increases the value of

that outsider by the amount

Ω
(
φΠiιj1, (1− φ)Πiιj0, {sι(k 6=j)υ}, {τk}

)− Ω
({sιkυ}, {τk}

)
.

Household ι maximizes its utility (46) by its labor supply Nι and investment,

{Sιj0} for j ∈ Θ and {Sιj1, Sιj2} for j /∈ Θ, subject to (19), (20), (21) and

(22), , taking the macroeconomic variables w, y, P and {Λjκ, Γj0} for all

j and κ as given. The Bellman equation associated with the household’s

maximization is given by16

ρΩ
({sιkυ}, {τk}

)
= max

Sιj ≥ 0 for all j
Ξι (48)

16Cf. Dixit and Pindyck (1994).
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with

Ξι
.
= u(C{τk}

ι , N{τk}
ι , y{τk})1−ε

+

∫

j∈Θ

Γj0

[
Ω

(
Πiιjκ, 0, {sι(k 6=j)υ}, τj + 1, {τk 6=j}

)− Ω
({sιkυ}, {τk}

)]
dj

+

∫

j /∈Θ

∑
κ=1,2

Λjκ

[
Ω

(
φΠiιj1, (1− φ)Πiιj0, {sι(k 6=j)υ}, {τk}

)

− Ω
({sιkυ}, {τk}

)]
dj. (49)

The first-order condition corresponding to labor supply Nι is given by

Nι = arg max
Nι

u(Cι, Nι, y)1−ε = arg max
Nι

u(Cι, Nι, y). (50)

Because ∂Cι/∂Sιjκ = w/P by (21) and (22), then from (1), (7), (47) and

(50) it follows that

0 =
du{τk}

dN
{τk}
ι

∣∣∣∣
C
{τk}
ι =y{τk}

=

[
∂u{τk}

∂C
{τk}
ι

w{τk}

P {τk} +
∂u{τk}

∂N
{τk}
ι

]

C
{τk}
ι =y{τk}

=
∂u{τk}

∂C
{τk}
ι

w{τk} − ξP {τk}y{τk}

P {τk} =
∂u{τk}

∂C
{τk}
ι

w{τk} − ξ

P {τk} ,

w{τk}
∣∣∣
C
{τk}
ι =y{τk}

= ξ = constant. (51)

Because ∂Cι/∂Sιjκ = −1/P {τk} by (21) and (22), the first-order conditions

corresponding to investment, {Sιj0} for j ∈ Θ and {Sιj1, Sιj2} for j /∈ Θ, are

Λjκ
d

dSιjκ

[
Ω

(
Πiιjκ, 0, {sι(k 6=j)υ}, τj + 1, {τk 6=j}

)− Ω
({sιkυ}, {τk}

)]

= (1− ε)
(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

1

P {τk} for j /∈ Θ and κ ∈ {1, 2}, (52)

Γj0
d

dSιj0

[
Ω

(
φΠiιj1, (1− φ)Πiιj0, {sι(k 6=j)υ}, {τk}

)− Ω
({sιkυ}, {τk}

)]

= (1− ε)
(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

1

P {τk} for j ∈ Θ. (53)

I try the solution that for each household ι the propensity to consume,

hι, and the subjective interest rate rι are independent of income Aι. Since

according to (22) income A
{τk}
ι depends directly on variables {sτk

ιkυ}, I denote
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A
{τk}
ι

({sτk
ιkυ}

)
. Assuming that the propensity to consume, hι, is invariant

across technologies {τk}, I obtain

P {τk}C{τk}
ι = hιA

{τk}
ι

({sτk
ιkυ}

)
. (54)

The share in the next innovator τj +1 is determined by investment under the

present technology τj, s
τj+1
ιjκ = Πi

τj

ιjκ for j /∈ Θ. The share in the next imitator

is determined by investment under the same technology τj, s
τj

ιjκ = (1−φ)Πi
τj

ιjκ

for j ∈ Θ. The value functions are then given by

Ω
({sιkυ}, {τk}

)
=

1

rι

(
u{τk})1−ε

,

Ω
(
Πiιjκ, 0, {sι(k 6=j)υ}, τj + 1, {τk 6=j}

)
=

1

rι

(
uτj+1,{τk 6=j})1−ε

.
(55)

From (22), (54) and (55) it follows that

A{τk}
ι

(
φΠiιj1, (1− φ)Πiιj0, {sτk

ι(k 6=j)υ}
)∣∣∣

iιj0=iιj1
= A{τk}

ι

({sτk
ιkυ}

)
,

C{τk}
ι

(
φΠiιj1, (1− φ)Πiιj0, {sτk

ι(k 6=j)υ}
)∣∣∣

iιj0=iιj1
= C{τk}

ι

({sτk
ιkυ}

)
,

Ω
(
φΠiιj1, (1− φ)Πiιj0, {sι(k 6=j)υ}, {τk}

)∣∣∣
iιj0=iιj1

= Ω
({sιkυ}, {τk}

)
. (56)

Given (55) and (56), one obtains

∂Ω
({sιkυ}, {τk}

)

∂S
τj

ιj

= 0. (57)

From (7), (19), (22), (54), (55), s
τj+1
ιjκ = Πi

τj

ιjκ for j /∈ Θ and κ = 1, 2, and

s
τj

ιj2 = (1− φ)Πi
τj

ιj0 for j ∈ Θ it follows that

∂s
τj+1
ιjκ

∂i
τj

ιjκ

= Π for j /∈ Θ and κ = 1, 2,
∂s

τj

ιj2

∂i
τj

ιj0

= (1− φ)Π for j ∈ Θ,

∂A
τj+1,{τk 6=j}
ι

∂s
τj+1
ιjκ

=
∂A

{τk}
ι

∂s
τj

ιj0

= 1,
∂i

τj

ιjκ

∂S
τj

ιjκ

=
1

w{τk}l{τk}
jκ

for all j and κ,
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dΩ
(
Πiιjκ, 0, {sι(k 6=j)υ}, τj + 1, {τk 6=j}

)

dS
τj

ιjκ

=
1− ε

rι

(
uτj+1,{τk 6=j})−ε ∂uτj+1,{τk 6=j}

∂C
τj+1,{τk 6=j}
ι

∂C
τj+1,{τk 6=j}
ι

∂A
τj+1,{τk 6=j}
ι︸ ︷︷ ︸

hι/P
τj+1,{τk 6=j}

∂A
τj+1,{τk 6=j}
ι

∂s
τj+1
ιjκ︸ ︷︷ ︸
=1

∂s
τj+1
ιjκ

∂i
τj

ιjκ︸ ︷︷ ︸
=Π

∂i
τj

ιjκ

∂S
τj

ιjκ

=
1− ε

rι

(
uτj+1,{τk 6=j})−ε ∂uτj+1,{τk 6=j}

∂C
τj+1,{τk 6=j}
ι

Πhι

P τj+1,{τk 6=j}
∂i

τj

ιjκ

∂S
τj

ιjκ

=
1− ε

rι

(
uτj+1,{τk 6=j})−ε ∂uτj+1,{τk 6=j}

∂C
τj+1,{τk 6=j}
ι

Πhι

w{τk}P τj+1,{τk 6=j}l{τk}
jκ

for j /∈ Θ, (58)

dΩ
(
φsιj1, (1− φ)Πiιj2, {sι(k 6=j)υ}, {τk}

)

dS
τj

ιj0

=
1− ε

rι

(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

∂C
{τk}
ι

∂A
{τk}
ι︸ ︷︷ ︸

=hι/P {τk}

∂A
{τk}
ι

s
τj

ιj0︸ ︷︷ ︸
=1

s
τj

ιj0

∂iτιj0︸ ︷︷ ︸
=(1−φ)Π

∂iτιj0
∂St

ιj0

=
1− ε

rι

(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

(1− φ)Πhι

P {τk}
∂iτιj0
∂St

ιj0

=
1− ε

rι

(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

(1− φ)Πhι

w{τk}P {τk}l{τk}
j0

for j ∈ Θ. (59)

I focus on a stationary equilibrium where the growth rate g and the allo-

cation of labor, (ljκ, x, Nι), are invariant across technologies. Because there

is symmetry throughout all industries j ∈ [0, 1] on one hand and throughout

all households j ∈ [0, 1] on the other hand, from (1), (3), (7), (13), (16) and

(51) it follows that

iιj0 = iιj1, l
{τk}
jκ = ljκ, x

{τk}
j = x = N − l, C{τk}

ι = y{τk},

u
{τk}
ι

u
τj+1,{τk 6=j}
ι

=
C
{τk}
ι

C
τj+1,{τk 6=j}
ι

=
P τj+1,{τk 6=j}

P {τk} =
y{τk}

yτj+1,{τk 6=j} =
B{τk}

Bτj+1,{τk 6=j} =
1

µ
,

w = constant, x = 1/(µw) = constant. (60)

Inserting (17), (49), (55), (56) and (60) into (48) yields

0 =

[
ρ +

∫

j /∈Θ

(Λj1 + Λj2)dj +

∫

j∈Θ

Γj0dj

]
Ω

({sιkυ}, {τk}
)
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− (
u{τk})1−ε −

∫

j /∈Θ

∑
κ=1,2

ΛjκΩ
(
Πiιjκ, 0, {sι(k 6=j)υ}, τj + 1, {τk 6=j}

)
dj

−
∫

j∈Θ

Γj0Ω
(
φΠiιj1, (1− φ)Πiιj0, {sι(k 6=j)υ}, {τk}

)
dj

=
[
ρ +

∫

j /∈Θ

(Λj1 + Λj2)dj
] 1

rι

(
u{τk})1−ε − (

u{τk})1−ε

−
∫

j /∈Θ

Λj1 + Λj2

rι

(
uτj+1{τk 6=j})1−ε

dj

=
1

rι

(
u{τk})1−ε

[
ρ + (1− µ1−ε)

∫

j /∈Θ

(Λj1 + Λj2)dj − rι

]

=
1

rι

(
u{τk})1−ε

[
ρ +

1− µ1−ε

ln µ
g − rι

]

.

This equation is equivalent to

rι = ρ +
1− µ1−ε

ln µ
g. (61)

Because there is symmetry throughout all households ι, their propensity

to consume is equal, hι = h. This, (5), (18), (21) and (54) yield

wl = w

∫

j∈Θ

lj0dj + w

∫

j /∈Θ

(lj1 + lj2)dj = w

∫

j∈Θ

lj0dj +

∫

j /∈Θ

(lj1 + lj2)dj

=

∫ 1

0

[∫

j∈Θ

Sιj0dj +

∫

j /∈Θ

(Sιj1 + Sιj2)dj

]
dι =

∫ 1

0

(Aι − PCι)dι

= (1− h)

∫ 1

0

Aιdι = (1− h)(1 + wl)

and

hι = h = (1 + wl)−1. (62)

Because there is perfect symmetry throughout all firms inside the sets of

innovative and imitative industries, there are η and ψ so that

lj` = η for j /∈ Θ and ` = 1, 2, lj0 = ψ for j ∈ Θ. (63)

Given this and (14), the production function (10) changes into

Λjκ = λl1−δ
jκ

(∫

k/∈Θ

2∑

`=1

lk`dk

)δ

= (2β)δλη. (64)
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Inserting (7), (11), (57), (58), (59), (60), (62), (63) and (64) into (52) and

(53) yields

µ1−ε (2β)δλ

rι

(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

Πh

wP {τk} = µ1−ε Λjκ

rι

(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

Πhι

wP {τk}η

=
Λjκ

rι

(
µu{τk})−ε ∂u{τk}

∂C
{τk}
ι

Πhι

w(P {τk}/µ)ljκ

=
Λjκ

rι

(
uτj+1,{τk 6=j})−ε ∂uτj+1,{τk 6=j}

∂C
τj+1,{τk 6=j}
ι

Πhι

w{τk}P τj+1,{τk 6=j}l{τk}
jκ

=
Λjκ

1− ε

dΩ
(
Πiιjκ, 0, {sι(k 6=j)υ}, τj + 1, {τk 6=j}

)

dS
τj

ιjκ

=
(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

1

P {τk}

for j /∈ Θ and κ ∈ {1, 2}, (65)

λ/a

rι

(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

(1− φ)Πh

wP {τk} =
Γj0

rι

(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

(1− φ)Πhι

w{τk}P {τk}l{τk}
j0

=
Γj0

1− ε

dΩ
(
φsιj1, (1− φ)Πiιj2, {sι(k 6=j)υ}, {τk}

)

dS
τj

ιj0

=
(
u{τk})−ε ∂u{τk}

∂C
{τk}
ι

1

P {τk}

for j ∈ Θ. (66)

Given (65) and (66), one obtains

β =
1

2

(
1− φ

µ1−εa

)1/δ

.

(67)

Equations (13), (14), (15), (17), (61), (62), (64) and (65) yield

l =

∫

j /∈Θ

(lj1 + lj2)dj +

∫

j∈Θ

lj0dj = 2η

∫

j /∈Θ

dj + ψ

∫

j∈Θ

dj = (1− β)ψ + 2βη,

ψ = (l − 2βη)/(1− β), (68)

g = (ln µ)

∫

j /∈Θ

(Λj1 + Λj2)dj = (2 ln µ)βΛjκ =
(
21+δλ ln µ)β1+δη, (69)

(
ρ +

1− µ1−ε

ln µ
g

)
µε−1

(2β)δλ
=

rιµ
ε−1

(2β)δλ
=

hΠ

w
=

Π

(1 + wl)w
. (70)

Relations (60), (67), (69) and (70) yield (24)-(26). 2
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