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Economic Growth in a Two-Agent
Economy

Abstract

This paper presents a two-agent economy, in which each agent has a
consumption-dependent time preference. The optimal dynamic paths
of accumulation will tend to one of many possible steady states, de-
pending on the location of the initial capital level. One of the main
results of this model arises in comparison with single-agent models.
More precisely, one possible instance of the model consists of a case in
which the two agents are such that without interaction one would be-
come “rich” and the other “poor”. However, since they share a single
production unit, a potential poverty trap may become averted.

1 Introduction.

Since Ramsey’s seminal paper, optimal economic growth has been repre-
sented by a single agent that maximizes an intertemporal welfare function.
His basic construction has remained as the fundamental building block of
models of optimal growth. The welfare function consists of the discounted
sum of instantaneous utilities. In most models the rates of time preference
were assumed to be constant and therefore independent over time. Instead,
some researchers considered a variable rate of time preference: Uzawa [24],
Beals and Koopmans [3], Iwai [14], Blanchard and Fischer [6] and in the last
fifteen years, Mantel [17] [18] [19], Becker and Mulligan [4] and Stern [21].
The key difference among these approaches lies on the particular character-
istics of the preference rate. Uzawa, for example, assumes that it increases
with the income level, making the optimal growth paths independent of
the initial conditions. On the contrary, following a suggestion of Irving
Fisher [10], Mantel [19] postulates that the degree of impatience (the rate of
time preference) should be a decreasing function of consumption and thus,
indirectly, of the income level. The lower the income, the higher the sacrifice
of postponing present consumption in exchange for future consumption.1

1A quite different way of including variable discount rates has been largely explored in
the literature on Behavioral Economics. The presence of time inconsistency in intertempo-
ral choices indicates that the agents have hyperbolic discount rates (Laibson [15]). On the
contrary, in our approach we assume time consistency and focus instead on the existence
of multiple steady-states.
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A line of work on optimal growth, based on assuming a single agent’s
decreasing rate of time preference, concludes that these preferences imply
a monotone evolution of capital in time, depending on the initial capital
levels.2. These results seem more satisfactory than Uzawa’s. The assump-
tion of decreasing time preference rates, and the conclusion that the initial
capital determines the path of growth, are certainly more realistic. In par-
ticular, a model with these features can generate poverty traps when the
representative agent has a low initial level of capital. However, this is still
far away from a realistic depiction of real world economies, which in gen-
eral do not exhibit monotone paths of growth, and where the heterogeneity
among agents cannot be easily reduced to a representation with a single
agent. These features of real economies are not unrelated: the mutual influ-
ence among agents makes capital paths interdependent and therefore more
prone to non-monotonicity.

In this paper we present a variation in the literature of optimal growth
with varying time preferences. To introduce heterogeneity, our model con-
siders two agents, who differ in their initial capital levels, and therefore in
their degrees of impatience, that depend on consumption and indirectly on
income. This is intended as a highly stylized representation of closely in-
tegrated economies, as for instance those belonging to an economic union.
In spite of this empirical interpretation of our framework, we will keep our
discussion in an abstract setting. Nevertheless, our final goal is to develop
an explicit treatment of interacting economies in growth.

For simplicity we assume that the agents share the yields of a single
productive unit (like in a private ownership economy à la Arrow-Debreu).
This leads to cross-over effects between the individual capital paths. In the
induced coordination game, a positive interaction implies that accumulation
(deaccumulation) by one agent leads to accumulation (deaccumulation) by
the other. This generates monotone paths for both agents. On the other
hand, if the interaction is negative, we can obtain non-monotone paths.

In this sense, one of the main results of our model arises in comparison
with single-agent models. More precisely, a straightforward implication of
the latter is that if two agents choose their optimal plans separately, a kind
of poverty trap may arise.3 That is, two different agents can be such that,

2This argument was pursued actively by the late Rolf Mantel [16] [17] [19]. Although
Mantel’s work along these lines is far less known than his celebrated results on the
Sonnenschein-Mantel-Debreu Theorem in General Equilibrium Theory, it follows from
the same foundational concerns [23]

3A poverty trap is defined as any self-reinforcing mechanism which causes poverty to
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if there were no interaction, one would become “rich” and the other “poor”
because of their respective accumulation policies. In our model, since they
interact, an initially growing gap in capital accumulation can be reduced
later. In fact, this is the main contribution of this paper: while in single-
agent models low initial levels of capital lead to paths of deaccumulation, and
therefore imply the existence of poverty traps, our model allows, in some
cases, to avoid them, thanks to the interaction among the agents.

The model presented here yields the optimal path of accumulation sup-
ported by subgame perfect equilibria (the sequences of decisions made in
accordance with the solution of Bellman’s equation). Nevertheless, the is-
sue of manipulability of these outcomes may be raised. We assume here
that the rights and allocation of the yields of the shared production unit
are common knowledge and furthermore enforzable by same agreed external
authority. This solves the problem for the moment while it opens venues for
further investigation.

The plan of the paper is as follows. Section 2 presents the model. Section
3 is devoted to the characterization of optimal paths. Section 4 characterizes
the steady states of the system. Section 5 summarizes the dynamics of this
two-agents system. Finally, section 6 discusses our results and compares
them with those obtained in an economy with a single agent.

2 The Model

The economy considered here consists of two agents and a single productive
unit. We assume, as in a Arrow-Debreu private ownership economy, that
both agents get a constant share of the outcome. We want to characterize
the equilibrium path of the economy as a function of the preferences, initial
levels of capital and outcome shares of the agents.

Each agent i (i = 1, 2) has a prospective utility function:

W i(0c) =
∞∑

s=0

{ s−1∏
t=0

α(ct)
}
ui(cs)

where ui(cs) is i’s instantaneous utility of consuming cs at s, and the real-
valued function α(ct) is the psychological factor of time preference. In turn,

persist (Azariadis and Stachurski [2]). Surveys of the literature on poverty traps can
be found, among others, in Hoff [13], Easterley [9], Azariadis [1], and Azariadis and
Stachurski [2].

4



the rate of time preference function is ρ(·) ≡ 1
α(.)−1. Since α(·) is increasing

in consumption (and therefore in income), α(·) can also be conceived as being
increasing in income. ρ is decreasing, and acts as a discount rate.

The prospective utility function and the psychological time preference
have the following properties:

1. ui(c) and α(c) are continuous on R+ and twice differentiable for c > 0.

2. ui′ > 0 > ui′′ , and limc→0+ ui′(c) = +∞, limc→∞ ui′(c) = 0, ui(0) ≥ 0.

3. α
′
> 0 > α

′′
, α(0) > 0.

4. 0 < α(c) ≤ ᾱ < 1 for some constant ᾱ, for all c ≥ 0.

5. |α′′
u + αu

′′ |≥2|α′
u

′ |.

It is easy to check that this prospective utility allows us to define an
(individual) welfare path {W i

t } such that:

W i
t ≡ W i[tc] =

∞∑
s=t

{ s−1∏
v=t

α(cv)
}

ui(cs)

where tc is the consumption path beginning at period t. The sequence {W i
t }

satisfies the difference equation:

W i
t = ui(ct) + α(ct)W i

t+1.

The second member, V (c, W i) ≡ ui(c)+α(c)W i, is called an utility aggrega-
tor. It has been proved that, with the properties assumed here, this function
is continuous, increasing in its arguments and satisfies the Lipschitz condi-
tion of order one (Boyd [8]). This shows that successive approximations lead
to a single value of the prospective utility.

On the other hand, there exists a single productive unit in the economy.
The technology consists in a simple neoclassical aggregate production func-
tion, which satisfies Inada’s conditions. Therefore, it can be summarized by
a real-valued production function f(k), where k is the positive per capita
capital. In turn, f(k) has the following properties:

1. It is continuous, twice continuously differentiable for k > 0.

2. f(0) = 0, f
′
> 0, f

′′
< 0, limk→0+f

′
(k) = +∞
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3. There exists a km > 0 such that f(km) = km.

4. 0 < kt < km for all t.

There is only one good, used both for consumption and for accumula-
tion. Furthermore, f(·) is net of depreciation and of maintenance costs. To
simplify the analysis the labor force is assumed constant, and all relevant
variables are expressed in per capita terms. A capital path 0k is admissible
and feasible for an initial capital stock k if k0 = k and for 0 ≤ t:

0 ≤ kt+1 ≤ f(kt)

Now we can postulate the optimization problem faced by both agents.
Without loss of generality, we assume that the functional form of their psy-
chological factor of time preference α(·) is the same for both agents. Since ρ
is decreasing in income, it will reach different values for different initial levels
of capital, being this sufficient to induce heterogeneity between the agents,
without resorting to different functions of psychological time preference.

Then, for each agent i the problem is to determine the optimal value
of the prospective utility, deciding how much to consume and save at each
time period, i.e. to find:

vi(ki
0) = Max(ci

0,ci
1,...)

∞∑
t=0

βtu
i(ci

t)

s.t.
ki

t+1 ≤ θif(ki
t + k̄−i

t ) − ci
t

βt+1 ≤ α(ci
t)βt

ki
0 and 0k̄

−igiven; β0 = 1

where θi is i’s share of the income, which is assumed constant and θi+θ−i = 1
(where variables and parameters subindexed by i correspond to agent i while
those with subindex −i correspond to the other agent). Moreover, without
loss of generality, we assume that θi > θ−i. It is assumed that these shares
are enforceable and not open to renegotiation. Of course, ci

t and ki
t are,

respectively, i’s consumption and savings level at period t. The total amount
of capital in the economy at t is kt = ki

t + k−i
t . Finally, notice that βt

actually is a shorthand for the recursively determined weight of ui(ci
t), i.e.

βt =
∏t−1

s=0 α(cs).

6



Finally, 0k̄
−i is the optimal plan of the −i agent. That is, each agent’s

optimal solution constrains the decisions of the other agent. Therefore, we
should consider whether there exist equilibria in the choices of 0k

i and 0k
−i.

This means that these agents play a coordination game, in which the
utilities depend on the accumulation paths determined by the individual
choices. More precisely, this is a perfect information sequential game, in
which at each step t each agent i has to choose ki

t. Notice that even if
the agents choose their consumptions simultaneously at each period t, this
is not an essential deviation from the perfect information setting. Each
agent’s strategy is ḡi(·). It assigns to each invested amount (kt) the value of
investment (ki

t+1) that makes optimal the prospective utility of agent i. We
have that:

Lemma 1 The optimal strategy of each agent i, ḡi∗, is such that
ḡi∗(kt)=gi(ki

t), where gi is the policy function that yields the optimal so-
lution for agent i.

Proof 1 It is known that if the instantaneous utility functions are continu-
ous and the spaces of individual consumptions are compact,4 the game has
subgame-perfect equilibria [11]. Furthermore, these equilibria obtain by (the
limit of) a backward induction process [12]. In this context this means that
agent i choses ki

t+1, given k̄i
t and k̄−i

t (the t-period components of the optimal
plans of i and −i) satisfying the following equation:

vi(k̄i
t) = Maxci

t

{
ui(ci

t) + α(ci
t)v

i(ki
t) : ci

t + ki
t ≤ θif(ki

t + k̄−i
t )
}

(1)

By the one-deviation property (equivalent to subgame-perfection [20]),
ki

t must be the optimal choice of i at period t. But then, since ki
t+1 =

ḡi∗(ki
t + k̄−i

t ) and vi(ki
t) is the functional equation ([22]), that is solved by

the policy function ki
t+1 = g(ki

t), we have that ḡ(ki
t + k̄−i

t )=g(ki
t).

To simplify matters we focus from now on the policy function, with
the understanding that it represents the subgame-perfect equilibrium in the
coordination game between i and −i. To derive further properties of the
optimal solutions for both agents just notice that the optimal solution for
(1) must satisfy Bellman’s equation:

vi
t = ui

t + αtv
i
t+1 (2)

4ct ∈ [0, f(km)] for all t ≥ 0.
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where vi
t = vi(ki

t), αt = α(ci
t) and vi

t+1 = vi
(
gi(ki

t)
)
.

Notice that, by assumption, u and α are twice continuously dif-
ferentiable for each t. Therefore, v′ and v′′ are continuous at each
t. Furthermore, the policy function is gi(ki) = θif(ki

t + k̄−i
t ) −

Argmaxci
t

{
ui(ci

t) + α(ci
t)v

i(y) : ci
t + y ≤ θif(ki

t + k̄−i
t )
}
.

The well-known result of Benveniste and Scheinkman ([5]) for discrete
dynamic programming problems indicates that if the technology set is convex
and with non-empty interior (a condition fulfilled here by the convexity of
f(·)), and each α(·)ui(·), when defined over (kt, k

i
t+1, k

−i
t+1) is concave and

differentiable, the value function is differentiable in an optimal solution. In
fact, αui is indeed concave and differentiable, due to the the properties of
u, α and f .5 It follows that vi, and consequently gi are continuous and
differentiable.

Then, from (2), the necessary first order condition of optimality with
respect to the control variable ci is

ui′
t + α′

tv
i
t+1 = αtv

i′
t+1 (3)

while the second order condition for a maximum is:

ui′′
t + α′′

t vi
t+1 − 2α′

tv
i′
t+1 + αtv

i′′
t+1 ≤ 0 (4)

Differentiating (3) for agent i we obtain:
[
ui′′

t + α′′
t v

i
t+1 − α′

tv
i′
t+1

]
θif

′ [dki + dk−i
]

=
[
ui′′

t + α′′
t vi

t+1 − 2α′
tv

i′
t+1 + αtv

i′′
t

]
gi′dki

Notice that we have also differentiated the optimal choices of −i, treating
them as variables and no longer as parameters. This is in order to determine
the interaction between the plans of both agents.

Rewriting this last expression we have:

gi′ =
ui′′

t + α′′
t vi

t+1 − α′
tv

i′
t+1

ui′′
t + α′′

t v
i
t+1 − 2α′

tv
i′
t+1 + αtv

i′′
t

θif
′ +

ui′′
t + α′′

t vi
t+1 − α′

tv
i′
t+1

ui′′
t + α′′

t v
i
t+1 − 2α′

tv
i′
t+1 + αtv

i′′
t

θif
′ dk−i

dki
,

and calling

Gi =
ui′′

t + α′′
t vi

t+1 − α′
tv

i′
t+1

ui′′
t + α′′

t v
i
t+1 − 2α′

tv
i′
t+1 + αtv

i′′
t

θif
′ (5)

5It is easy to check that (αui)′ ≥ 0 and, since |α′′
u + αu

′′ |≥2|α′
u

′ |, (αui)′′ ≤ 0.
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we have that

gi′ = Gi

[
1 +

dk−i

dki

]
(6)

where dk−i

dki is the coefficient of interaction between the agents’ capital paths.
Similarly, for agent −i we have that

g−i′ = G−i

[
1 +

dki

dk−i

]
(7)

where G−i is analogous to Gi (replacing i for −i).

3 Optimal Paths.

Expressions (6) and (7) in the previous section summarize the properties of
optimal paths of capital accumulation. Since the policy functions gi and g−i

determine the amount of capital at t + 1 in terms of the current amount of
capital at t, their derivatives define qualitatively the behavior of ki and k−i.

First, let us note that the sign of gi defines the monotonicity (or its
absence) of

{
ki

t

}∞
t=0:

Proposition 1 If gi : Ki → Ki, where Ki ⊆ �+ is the space of feasible
values of ki, is continuous and differentiable, its first derivative verifies that
gi′ > 0 if and only if the capital path

{
ki

t

}∞
t=0 is monotone. That is, either

ki
t ≤ ki

t+1 for all t or ki
t ≥ ki

t+1 for all t.

Proof 1 If gi′(·) > 0 it is clear that for ki
a ≤ ki

b, gi(ki
a) ≤ gi(ki

b). Therefore,
if ki

0 ≤ gi(ki
0) we have by definition that ki

0 ≤ ki
1. This implies that gi(ki

0) ≤
gi(ki

1), or ki
1 ≤ ki

2. By induction we have that, if ki
0 ≤ gi(ki

0), {ki
t}∞t=0 is

(non-strictly) increasing. On the other hand, if ki
0 ≥ gi(ki

0) by a similar
argument, it follows that {ki

t}∞t=0 is (non-strictly) decreasing.
The converse is obvious.

On the other hand, if gi′ ≤ 0 we have by the same token that ki
0 ≤

gi(ki
0) = ki

1 ≥ ki
2 = gi(ki

1). In other words, gi′ ≤ 0 generates a non-
monotonic path of capital, fluctuating from period to period. Hence, ki goes
up one period and down the next, and so on.

Therefore, to know the behavior of the solutions of (1) for both agents,
we have to evaluate the signs of the derivatives of the policy functions. The
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expressions we have to evaluate are the following:

gi′ = Gi

[
1 +

dk−i

dki

]

g−i′ = G−i

[
1 +

dki

dk−i

]

First, let us analyze the sign of each Gi:

Gi =
ui′′

t + α′′
t vi

t+1 − α′
tv

i′
t+1

ui′′
t + α′′

t v
i
t+1 − 2α′

tv
i′
t+1 + αtvi′′

t

θif
′

where the denominator is, from expression (4), less or equal to 0. According
to the properties of the production unit, θif

′ > 0. The value function verifies
vi
t ≥ 0 at each t.6 From equation (3) and the concavity of ui and α it follows

that vi′
t+1 > 0. Putting all this together we have that ui′′

t +α′′
t vi

t+1−α′
tv

i′
t+1 <

0. In other words: Gi > 0.7

Hence,

gi′ > 0 if and only if
dk−i

dki
> −1 (8)

and

g−i′ > 0 if and only if
dki

dk−i
> −1 (9)

These equivalences provide the main tools to analyze the behavior of
the optimal paths of capital accumulation. First let us note that dk−i

dki and
dki

dk−i at period t may be approximated by k−i
t −k̄−i

t

ki
t−k̄i

t
and ki

t−k̄i
t

k−i
t −k̄−i

t

, respectively,

where k̄i
t and k̄−i

t are the amounts of capital on the optimal paths at t, while
ki

t and k−i
t are close points that obtain from very small deviations from the

optimal path values.
Notice that even if dk−i

dki = dki

dk−i , which reduces the number of free vari-
ables required by conditions (8) and (9), we still have three of them for two
expressions. That is, the system is underdetermined.

6It is the solution of the structural problem: a sum of discounted utilities.
7The constancy of θi and θ−i simplifies matters, but Gi (and G−i) will have the same

sign if they are assumed to change in time. For instance, if θi =
ki

t

ki
t
+k−i

t

, i.e., if the share

of the income accrued by i at t + 1 is the proportion of the total capital invested in t
that belongs to i, in the expression of Gi, θif

′ is replaced by
θ−i

ki
t
+k−i

t

f + θif
′ which is also

positive.
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Therefore, instead of having a single possible optimal path of capital
we have a taxonomy of cases. To simplify the analysis, we summarize the
results as follows:

Proposition 2 At each t either one of these cases is valid:

• Case 1 sign
(
ki

t − k̄i
t

)
= sign

(
k−i

t − k̄−i
t

)
if and only if gi′, g−i′ ≥ 0.

• Case 2
∣∣ki

t − k̄i
t

∣∣ > ∣∣∣k−i
t − k̄−i

t

∣∣∣ and sign
(
ki

t − k̄i
t

) 	= sign
(
k−i

t − k̄−i
t

)
if and only if gi′ > 0, g−i′ ≤ 0.

• Case 3
∣∣ki

t − k̄i
t

∣∣ ≤ ∣∣∣k−i
t − k̄−i

t

∣∣∣ and sign
(
ki

t − k̄i
t

) 	= sign
(
k−i

t − k̄−i
t

)
if and only if gi′ ≤ 0 and g−i′ > 0.

Proof 2 • Case 1 ⇒ ) sign
(
ki

t − k̄i
t

)
= sign

(
k−i

t − k̄−i
t

)
implies that

dk−i

dki > 0. Then dk−i

dki > −1 and dki

dk−i > −1. That is, according to (8)
and (9), gi′, g−i′ > 0.
⇐ ) gi′, g−i′ > 0 implies (by (8) and (9)) that dk−i

dki > −1 and dki

dk−i >

−1. Suppose that sign
(
ki

t − k̄i
t

) 	= sign
(
k−i

t − k̄−i
t

)
and assume, with-

out loss of generality, that
∣∣ki

t − k̄i
t

∣∣ >
∣∣∣k−i

t − k̄−i
t

∣∣∣, then, dki

dk−i < −1

while dk−i

dki > −1, absurd. Therefore sign
(
ki

t − k̄i
t

)
= sign

(
k−i

t − k̄−i
t

)

• Case 2 ⇒ )
∣∣ki

t − k̄i
t

∣∣ >
∣∣∣k−i

t − k̄−i
t

∣∣∣ implies that
∣∣∣dk−i

dki

∣∣∣ < 1, while

sign
(
ki

t − k̄i
t

) 	= sign
(
k−i

t − k̄−i
t

)
implies that dk−i

dki < 0. In other

words, dk−i

dki > −1, which in turn means that dki

dk−i ≤ −1. That is,
according to (8) and (9), gi′ > 0 and g−i′ 	> 0.
⇐ ) gi′ > 0, g−i′ 	> 0 implies by (8) and (9) that dki

dk−i > −1 and dk−i

dki ≤
−1. It is immediate that this implies that

∣∣ki
t − k̄i

t

∣∣ > ∣∣∣k−i
t − k̄−i

t

∣∣∣ and

sign
(
ki

t − k̄i
t

) 	= sign
(
k−i

t − k̄−i
t

)
.

• Case 3 Analogous to the proof of Case 2.

Case 1 is the simplest: if both agents’ optimal capital stocks (the k̄is)
already move in the same direction, even if either one of them is perturbed,
their policy functions will still yield monotone paths of accumulation. That
is, k̄i and k̄−i increase or decrease in parallel.
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To analyze case 2 we assume without loss of generality that k̄i
1 − k̄i

0 > 0
and k̄−i

1 − k̄−i
0 < 0. Then, at t = 1 a little perturbation is exerted such that∣∣ki

1 − k̄i
1

∣∣ >
∣∣∣k−i

1 − k̄−i
1

∣∣∣ while ki
1 − k̄i

1 > 0 and k−i
1 − k̄−i

1 < 0. That is, the
perturbation consists in taking some capital away of −i and transferring it
to i. Then gi′ > 0 and g−i′ ≤ 0. In other words, k̄i will increase, while
k̄−i will change its direction at t = 1. That is, after t = 1 both capital
stocks will move in the same direction, falling into case 1. Notice that once
both gi′ and g−i′ are non-negative, there is no future period in which they
might become negative. Finally, for case 3 the analysis is similar. Hence,
either both capital paths are monotone, or one of them increases (decreases)
monotonically, while the other reverses its direction after the first period,
increasing (decreasing) monotonically thereafter. This means that only if,
from period 0 to period 1, one agent accumulates more than the amount
that the other deaccumulates, the former will drag the latter towards a path
of sustained accumulation.

4 Steady States.

We must complement the previous analysis with a consideration about the
long-run growth. In fact, we are interested in the steady state solutions
to the optimization problems of both agents. That is, we look for capital
stocks8 ki such that gi(ki) = ki. For those values it follows that:

vi
t = vi(ki

t) = vi
(
gi(ki

t)
)

= vi
t+1

therefore Bellman’s equation (2 becomes:

vi = ui + αvi

and the first order condition (3:

ui′ + α′vi = αvi′

Since the control variable reaches a stationary value, Bellman’s equation
becomes:

vi(ki) = ui(ĉi) + α(ĉi)vi
(
θif(ki + k−i)− ĉi

)
(10)

where ĉi is the steady state value of ci. This property implies that the
accumulation paths of both agents depend of each other:

8From now on, in order to simplify the notation, ki and k−i will denote values in the
optimal paths.
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Lemma 2 ki and k−i must reach their steady states simultaneously.

Proof 2 Assume, without loss of generality, that ki has reached at t its
steady state value, k̂i, but k−i still varies. Then, f(ki

t + k−i
t ) = f(k̂i + k−i

t ),
but since k−i

t 	= k−i
t+1, f(k̂i + k−i

t ) 	= f(k̂i + k−i
t+1). Therefore, according to

(10 we have that

vi(k̂i) = ui(ĉi) + α(ĉi)vi
(
θif(k̂i + k−i

t ) − ĉi
)

	= ui(ĉi) + α(ĉi)vi
(
θif(k̂i + k−i

t+1) − ĉi
)

= vi(k̂i)

That is, vi(k̂i) 	= vi(k̂i). Absurd. Therefore both ki and k−i must reach their
steady states at the same time.

This result should be understood as follows. If the process of capital
accumulation of both agents is as prescribed by their policy functions, the
convergence to steady states takes infinite periods of time. But if some
external shock leaves one of the agents in a steady state, the other must
also reach its own. This result is consistent with our analysis of the agents’
capital stocks behavior. They move in the same direction (except possibly
for the first period) because of their mutual influence.

Another condition that follows assuming that the control variable ci

reaches a steady state is the envelope condition. Since by definition gi(ki) =
θif(ki + k−i) − ci, differentiating (10) with respect to ki, we find:

vi′ = α
∂vi

∂ki
+ α

∂vi

∂k−i

dk−i

dki
. (11)

Since
∂vi

∂ki
= θiv

i′f ′ =
∂vi

∂k−i

(11) becomes

1 = θiαf ′
[
1 +

dk−i

dki

]

Since the steady states must be reached simultaneously, the previous condi-
tion has to be fulfilled by both of them:

1 =
θi

θ−i

α
(
θif(ki + k−i)− ki

)
α (θ−if(ki + k−i)− k−i)

[
1 + dk−i

dki

]
[
1 + dki

dk−i

]
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Introducing a new function to summarize the information involved in
this characterization we have

φ(ki, k−i) ≡ θiα
(
θif(ki + k−i) − gi(ki)

)[
1 +

dk−i

dki

]

− θ−iα
(
θ−if(ki + k−i) − g−i(k−i)

)[
1 +

dki

dk−i

]

The condition φ(ki, k−i) = 0 is a necessary and sufficient9 condition for
(ki, k−i) to be a steady state. Then, the set of steady states of the system
is:

k̂i × k̂−i =
{
(ki, k−i) ∈ Ki × K−i : φ(ki, k−i) = 0

}
The characterization of steady states is given by the following:

Theorem 1 ∅ 	= k̂i × k̂−i =
{

(ki, k−i) : dk−i

dki = θ−i

θi

α(θ−if(ki+k−i)−k−i)
α(θif(ki+k−i)−ki)

}
.

Proof 1 Consider a generic steady state, (k̂i, k̂−i). Then:

φ(k̂i, k̂−i) = θiα
(
θif(k̂i + k̂−i) − k̂i

) [
1 +

dk−i

dki

]

− θ−iα
(
θ−if(k̂i + k̂−i) − k̂−i

)[
1 +

dki

dk−i

]
= 0

It follows trivially that

dk−i

dki
=

θ−i

θi

α
(
θ−if(k̂i + k̂−i) − k̂−i

)
α
(
θif(k̂i + k̂−i) − k̂i

)
On the other hand, for

each (k̂i, k̂−i) such that dk−i

dki = θ−i

θi

α(θ−if(k̂i+k̂−i)−k̂−i)
α(θif(k̂i+k̂−i)−k̂i) it is trivial that

φ
(
k̂i, k̂−i

)
= 0.

Now let us consider this relation between ki and k−i at (ki, k−i) = (0, 0). At
that point it is trivial that k−i = θ−i

θi

α(0)
α(0)k

i (since at (0, 0), f(0 + 0) = 0 and

gi(0) = 0 = g−i(0)). Therefore dk−i

dki = θ−i

θi

α(0)
α(0) , i.e. (0, 0) is a steady state.

9Sufficiency follows from the fact that the envelope condition is defined upon a solution
to problem (1.
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This means that at least (0, 0) is a steady state and that at each steady
state the vector field has its direction defined by the relation between the pa-
rameters θ and the psychological factors of time preference computed at that
point. On the other hand, Theorem 1 is not enough as a characterization
of steady states. A steady state like (0, 0) is not economically meaningful.
Therefore we are interested in other (positive) values of the steady state vari-
ables. We cannot show that these entities exist in general since it depends
clearly on the shape of φ. We can, instead, provide sufficient conditions for
their existence:

Proposition 3 If there exist two pairs (ki
or, k

−i
or ) (close to (0, 0)) and

(ki
m, k−i

m ) � (0, 0) (with ki
m + k−i

m = km) such that φ(ki
m, k−i

m ) < 0 while
φ(ki

or, k
−i
or ) > 0, there exist (k̂i, k̂−i) � (0, 0) such that (k̂i, k̂−i) ∈ k̂i × k̂−i.

Proof 3 By assumption, we have that (ki
or, k

−i
or ) ∈ K− = {(ki, k−i) ∈

Ki × K−i : φ(ki, k−i) ≥ 0} and (ki
m, k−i

m ) ∈ K− = {(ki, k−i) ∈ Ki × K−i :
φ(ki, k−i) ≤ 0}. We have that Ki × K−i = K− ∪ K−, and therefore the
convex combination of (ki

or, k
−i
or ) and (ki

m, k−i
m ) is in K− ∪ K−. Then, a

straightforward application of the Knaster-Kuratowski-Mazurkiewicz Theo-
rem (see Border [7]) yields that there exist (k̂i, k̂−i) ∈ K− ∩ K−. Fur-
thermore, (k̂i, k̂−i) is an element of the segment that joins (ki

or, k
−i
or ) and

(ki
m, k−i

m ). This means, on one hand, that φ(k̂i, k̂−i) = 0, and on the other
that (k̂i, k̂−i) � (0, 0) (since only (ki

or, k
−i
or ) may have a 0 component, but it

does not belong to K− ∩ K−).

This means that, if there are at least two pairs of capital levels, one close
to the origin, and the other in the technical efficiency frontier, such that the
vector field given by gi and g−i points towards the interior of Ki×K−i there
must exist an interior steady state.

So far, the cardinality of k̂i× k̂−i is not determined. But notice that in a
compact set, like Ki×K−i, if the steady states are isolated means that they
must be finite in number. The advantages of this feature for the analysis
of the global dynamics are clear: a finite number of steady states allows a
partition of the phase space into a finite collection of attraction basins. The
position of the initial capital levels determines the optimal path of the entire
system.

As a previous step for this line of analysis, let us give a definition of
non-degeneracy of steady states:
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Definition 1 A steady state (k̂i, k̂−i) is non-degenerate if its gradient
∇φ(k̂i, k̂−i) = ( ∂φ

∂ki ,
∂φ
∂ki ) verifies that ∇φ(k̂i, k̂−i) · (k̂i, k̂−i) = 0, while the

matrix of second order derivatives of φ, D2φ(k̂i, k̂−i) is either negative or
positive definite.

That is, a steady state is non-degenerate if φ attains a local maximum
or minimum at the steady state. Therefore:

Lemma 3 If each steady state (k̂i, k̂−i) is non-degenerate, the steady states
are isolated and finite in number.

Proof 3 Given a non-degenerate steady state (k̂i, k̂−i) we have that
φ(k̂i, k̂−i) = 0. Consider a linear approximation of φ at any point (ki, k−i)
in a close neighborhood of (k̂i, k̂−i):

φ(ki, k−i) = φ(k̂i, k̂−i)+
∂φ

∂ki
[ki−k̂i]+

∂φ

∂k−i
[k−i−k̂−i]+

1
2

{
∂2φ

∂ki2
[ki − k̂i]2+

+ 2
∂2φ

∂ki∂k−i
[ki − k̂i][k−i − k̂−i] +

∂2φ

∂k−i2
[k−i − k̂−i]2

}

This expression can be more concisely expressed in the following form:

φ(ki, k−i) = φ(k̂i, k̂−i) + ∇φ(k̂i, k̂−i) ·
(
ki − k̂i, k−i − k̂−i

)
+

1
2

⎧⎨
⎩
(
ki − k̂i, k−i − k̂−i

)
·
⎡
⎣ ∂2φ

∂ki2
∂2φ

∂ki∂k−i

∂2φ
∂ki∂k−i

∂2φ

∂k−i2

⎤
⎦ ·
(

ki − k̂i

k−i − k̂−i

)⎫⎬
⎭

The first term in the second member is zero because (k̂i, k̂−i) is a steady
state. The second term can be rewritten as:

∇φ(k̂i, k̂−i)
(
ki − k̂i, k−i − k̂−i

)
= ∇φ(k̂i, k̂−i)

(
ki, k−i

)
−∇φ(k̂i, k̂−i)

(
k̂i, k̂−i

)

where ∇φ(k̂i, k̂−i)
(
k̂i, k̂−i

)
= 0 because of non-degeneracy. On the other

hand, since D2φ(k̂i, k̂−i) is either positive or negative definite we have that
in case ∇φ(k̂i, k̂−i) 	= 0 then either ∂φ

∂ki ,
∂φ

∂k−i ≥ 0 or ∂φ
∂ki ,

∂φ
∂k−i ≤ 0. In

either case, the sign of the entire expression is either non-negative (when
D2φ(k̂i, k̂−i) is positive definite) or non-positive (when D2φ(k̂i, k̂−i) is neg-
ative definite). Finally, consider the expression inside the curly brackets:

(
ki − k̂i, k−i − k̂−i

)
D2φ(k̂i, k̂−i)

(
ki − k̂i

k−i − k̂−i

)
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which is strictly negative when D2φ(k̂i, k̂−i) is negative definite or strictly
positive when it is positive definite. Therefore, in a neighborhood of (k̂i, k̂−i),
φ 	= 0, being the steady state isolated. Therefore, the number of steady states
must be countable. On the other hand, since Ki×K−i is closed and bounded,
the total number of steady states must be finite.

5 The Structure of the Phase Space.

We can summarize all the previous results in order to characterize the vec-
tor field (gi(·), g−i(·)). If there exist non-trivial and non-degenerate steady
states, the elements in k̂i× k̂−i are finite, and therefore they can be enumer-
ated. Denoting a steady state (k̂i, k̂−i) as k̂i,−i, the enumeration of steady
states is k̂i × k̂−i = {k̂0

i,−i, . . . , k̂
n
i,−i}, where k̂0

i,−i = (0, 0) and k̂n
i,−i lies,

eventually, on the boundary {(ki, k−i) : ki + k−i = km}. Then, the entire
structure of the vector field on Ki × K−i can be described in terms of the
behavior of (gi(·), g−i(·)) related to the elements of k̂i × k̂−i:

Theorem 2 For the initial capital level (ki
0, k

−i
0 ) we have four possible

cases:

• Case 1 (ki
0, k

−i
0 ) = k̂j

i,−i, for j ∈ {0, . . . , n}. Then the system remains
at (ki

0, k
−i
0 ).

• Case 2 (ki
0, k

−i
0 ) is such that (without loss of generality) ki

0 >
Max

k̂j
i,−i

k̂i while k−i
0 < Max

k̂j
i,−i

k̂−i. Then sign
(
gi′(ki

0)
) 	=

sign
(
g−i′(k−i

0 )
)
.

• Case 3 (ki
0, k

−i
0 ) is such that ki

0 > Max
k̂j

i,−i
k̂i and k−i

0 > Max
k̂j

i,−i
k̂−i.

Then gi′(ki
0), g

−i′(k−i
0 ) ≥ 0.

• Case 4 k̂0
i,−i ≤ (ki

0, k
−i
0 ) ≤ k̂n

i,−i, then gi′(ki
t) ≥ 0 and g−i′(k−i

t ) ≥ 0,
for t ≥ 1.

Proof 2 The first case is immediate from the definition of steady state.
The second case requires to note that since ki

0 > Max
k̂j

i,−i
k̂i and k−i

0 <

Max
k̂j

i,−i
k̂i,ki has to decrease towards a steady state, while k−i can increase

or remain the same. That is, the signs of gi′(ki
0) and g−i′(k−i

0 ) are different.
Case 3 is trivial, since both variables must decrease towards a stable steady
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state; thus, the derivative of the policy functions are non-negative. The last
case follows considering (by the finiteness of the steady states) that there
must exist a pair of steady states k̂j

i,−i and k̂l
i,−i such that (ki

0, k
−i
0 ) verifies

that k̂j
i,−i ≤ (ki

0, k
−i
0 ) ≤ k̂l

i,−i and that there are no other pair of steady
states k̂r

i,−i and k̂s
i,−i, k̂j

i,−i ≤ k̂r
i,−i ≤ (ki

0, k
−i
0 ) ≤ k̂s

i,−i ≤ k̂l
i,−i. On the other

hand (without loss of generality), k̂j
i,−i is a stable steady state while k̂l

i,−i is
unstable. Otherwise, if both were unstable there would exist a stable steady
state between them, violating our assumption that both were the closest to
(ki

0, k
−i
0 ). Similarly, if both were stable there would exist an unstable steady

state between them, contradicting again our assumption. Then (ki, k−i) will
decrease, after an eventual non-monotone jump at t = 1, towards k̂j

i,−i. That
is, gi, g−i ≥ 0.10

According to this result, any dynamical path of capital accumulation will be,
from t = 1 on, asymptotically convergent towards a non-degenerate steady
state. The structure of a possible vector field on Ki × K−i is depicted in
Figure 1. The following result, which is its analytical counterpart, follows
as a corollary of Theorem 2:

Lemma 4 For each pair of steady states, k̂j
i,−i, k̂l

i,−i we have that

1. either k̂j
i,−i < k̂l

i,−i or k̂j
i,−i > k̂l

i,−i. That is, steady states can be
linearly ordered.

2. if k̂j
i,−i < k̂l

i,−i, and both are stable steady states, there must exist
another steady state k̂s

i,−i, such that k̂j
i,−i < k̂s

i,−i < k̂l
i,−i and for each

k̂j
i,−i < (ki

0, k
−i
0 ) < k̂l

i,−i either (ki
t, k

−i
t ) t→∞→ k̂j

i,−i or (ki
t, k

−i
t ) t→∞→

k̂l
i,−i, or (ki

t, k
−i
t ) = k̂s

i,−i for all t.

Proof 4 Suppose that k̂i,j < k̂i,l and k̂−i,l < k̂−i,j and no steady state k̂q
i,−i

is such that k̂i,j < k̂i,q < k̂i,l while k̂−i,j > k̂−i,q > k̂−i,l. One of k̂j
i,−i,

k̂l
i,−i must be stable, otherwise if both were unstable, there would exist two

stable steady states k̂r
i,−i and k̂s

i,−i such that k̂r
i,−i < k̂j

i,−i, k̂
l
i,−i < k̂s

i,−i and
some of the (ki, k−i) such that k̂i,j < ki < k̂i,l, k̂i,j < k−i < k̂−i,l, would
be attracted towards k̂r

i,−i while others towards k̂s
i,−i. In other words, there

would exist an unstable steady state k̂
q
i,−i such that k̂i,j < k̂i,q < k̂i,l while

10Notice that this proof recasts Case 2 for every subset of k̂i × k̂−i.
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k̂−i,j > k̂−i,q > k̂−i,l. Contradiction.
On the other hand, the same contradiction would arise if both steady states
were stable. Then only one of them, say k̂j

i,−i must be stable. But then, if
(ki

0, k
−i
0 ) is such that k̂i,j < ki

0 < k̂i,l while k̂−i,j < k−i
0 < k̂−i,l a contradiction

follows again since gi′ < 0 because of the stability of k̂j
i,−i while gi′ ≥ 0 since

the conditions correspond to Case 4 of Theorem 2. Therefore, the steady
states are linearly ordered. The validity of the second statement follows
immediately from 1.

Now, to complete the characterization of the dynamics of this system,
notice that the basin of attraction towards an interior steady state k̂

j
i,−i

(j 	= 0) is determined by its two neighboring unstable steady states:

k̂j
i,−i = {(ki, k−i) ∈ Ki × K−i : k̂j−1

i,−i < (ki, k−i) < k̂j+1
i,−i}

while at the boundary, if the steady state is stable we have:

k̂0
i,−i = {(ki, k−i) ∈ Ki × K−i : k̂0

i,−i < (ki, k−i) < k̂1
i,−i}

while if it is unstable:

k̂0
i,−i = {(0, 0)}

In any case, it must be clear that any dynamical path beginning at an
element of Ki ×K−i will get, at t = 1, to the basin of attraction of a steady
state even if

⋃
j∈{0,...,n} k̂j

i,−i 	= Ki × K−i.

6 A Golden Rule.

We have shown, until now, that the optimal solutions to the problem repre-
sented in (1) can exhibit a multiplicity of steady states. This is because the
psychological discount factors, and then the rate of time preference depend
on the income level. If they were assumed constant, say αi, α−i, from the
envelope condition (11) we would have that at a steady state (k̂i, k̂−i) (using
that at a steady state dk−i

dki = θ−i

θi

α−i

αi ) :

f ′(k̂i + k̂−i) =
1

θiαi + θ−iα−i
.

Since f is concave, there is a unique value of k̂i+k̂−i that verifies this relation.
That is, k̂i × k̂−i ⊂

{
(k̂i, k̂−i) : f ′(k̂i + k̂−i) = 1

θiαi+θ−iα−i

}
∪{(0, 0)}. But,
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according to Lemma 4 steady states are linearly ordered. Therefore there
can exist only one steady state in

{
(k̂i, k̂−i) : f ′(k̂i + k̂−i) = 1

θiαi+θ−iα−i

}
.

If, instead, the rate of time preference is decreasing in income, we can
obtain several steady states. This allows us to compare our results with those
in Mantel [19]. There, like in our paper, the dynamical path of accumulation
of the single agent in the economy is determined both by the initial capital
level and the preferences over time. Besides, it follows also that only one
steady state exists with a constant or increasing rate of time preference, and
several otherwise.

From the results in the previous sections follows that at steady state the
marginal productivity of (total) capital equals an expression based on the
rates of time preference. This relation is actually a version of the modified
Golden Rule of Economic Growth theory. More precisely:

Proposition 4 If
f ′(ki + k−i) > (<, =) 1

θiα(θif(k̂i+k̂−i)−k̂i)+θ−iα(θ−if(k̂i+k̂−i)−k̂−i) , in a neigh-

borhood of a stable steady state (k̂i, k̂−i), (ki
t, k

−i
t ) will increase (decrease,

remains constant) towards (k̂i, k̂−i).

Proof 4 From the envelope condition (11) it is immediate that

f ′(k̂i + k̂−i) =
1

θiα
(
θif(k̂i + k̂−i) − k̂i

)
+ θ−iα

(
θ−if(k̂i + k̂−i)− k̂−i

)

On the other hand, if (ki, k−i) is such that

f ′(ki + k−i) >
1

θiα
(
θif(k̂i + k̂−i) − k̂i

)
+ θ−iα

(
θ−if(k̂i + k̂−i)− k̂−i

)

it means that k̂i + k̂−i > ki + k−i. One possible case is that (ki, k−i) ≤
(k̂i, k̂−i) and therefore (ki, k−i) has to increase towards (k̂i, k̂−i). The other
possibility is that, say, ki < k̂i while k−i > k̂−i. Using their distances
towards their steady state value we have that |ki − k̂i| > |k−i − k̂−i|. This,
combined with the fact that sign

(
ki − k̂i

)
	= sign

(
k−i − k̂−i

)
implies that

the conditions of Case 2 in proposition 2 are verified. Therefore gi′ > 0
while g−i′ < 0. That is, ki will grow towards k̂i, and k−i will either jump to
k̂−i and stay thereafter there or will jump below k̂−i and then, after t = 1
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grow until it reaches that value.
The case of

f ′(ki + k−i) <
1

θiα
(
θif(k̂i + k̂−i)− k̂i

)
+ θ−iα

(
θ−if(k̂i + k̂−i) − k̂−i

)
is analogous.

This result is also similar to the characterization given by Mantel [19], in
which the movement of capital is determined by the relation between the
marginal productivity of capital and the rate of time preference. Thus,
the dynamic path of the economy tends to one of several (stable) steady
states, depending on the location of the initial level of capital. According to
Lemma 4, either these initial values will be situated on the attraction basin
of a stable steady state, or else the path of accumulation will jump into a
basin at t = 1.

7 Discussion.

An important difference between Mantel’s and our approach is the impli-
cation of presence of more than one agent; in particular, the fact that the
dynamics depends on their interaction. While if agents are left on their own
one may fall while the other grows sustained, the interaction makes them
move in the same direction after t = 1. Therefore, while in a single-agent
economy with low initial capital the agent fall in a poverty trap, in our two-
agent economy the most wealthy may reverse the motion of the poorest and
pull him toward a higher income steady state (see Figure 2). In turn, it is
also may happen (almost theoretically) that the poorest agent pushes the
richest into a lower steady state. In any case both will move monotonically
in the same direction after t = 1.

How can be our results interpreted in terms of economic development?
This question is natural given the original aims of Mantel, who intended his
model to provide an explanation of increasing discrepancies between poor
and rich countries. In this sense, he provided a formal argument for the
origin of poverty traps. In our model, instead, any initial discrepancy can
be reduced, or even eliminated, leading to possibility of avoiding poverty
traps. As shown in proposition 2, when the accumulation of one agent
surpasses the deaccumulation of the other, the latter reverts his path.
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The mechanism that yields this reversion has an interpretation in De-
velopment Theory: two countries that constitute a common market, with
one investing more than any possible disinvestment of the other, can jointly
grow through their interaction. The latter country would then begin to in-
vest and then avoid the poverty trap to which it would fall if it were on its
own.

On the other hand, as said before, the enforzability of property rights
is assumed along the whole exercise. While this allows to dispose of the
assignation game between both parties, it leaves for further work the issue
of including it in the framework.

Finally, a natural extension of this work is to incorporate specific func-
tional forms and solve the model explicitly, in order to find out the conditions
under which poverty traps may be avoided.
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8 Figures.
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